
Part II - Starting with the Bricks:
Programming Paradigms

3. Paradigm Overview

Structured programming imposes
discipline on direct transfer of
control

Removed goto

Added if/then/else and do/while

Object-oriented programming
imposes discipline on indirect
transfer of control

Removed

function call stack frame

nested functions

function pointers

Added

constructors for a class

instance variables on heap

methods

Functional programming imposes
discipline upon assignment

Removed assignments

Added
lambda-calculus

immutability

Nothing else can be removed and
no other paradigms can exist

What about Logic programming
languages such as Prolog? Remove
functions

What about scripting programming
languages such as JavaScript,
Python, Ruby? Remove compilation

What about visual programming, low
code, no code? Remove the code

What about ML? Remove predefined logic

Quantum computers?

4. Structured Programming

Dijkstra
first "programmer" and inventor of
structured programmer

Böhm and Jacopini proved: all
programs can be constructed from
just three structures

sequence

selection

iteration

Dijkstra tried to use formal
mathematical proofs for programs But failed - it is too hard

Science proofs are more rational

Such proofs are falsifiable (testable)
but not provable

If we can't prove statement is false
then we consider it true

Testing shows the presence, not the
absence, of bugs

We show correctness by failing to
prove incorrectness, despite our
best efforts

Programs that use unrestrained
goto cannot be deemed correct no
matter how many tests are applied
to it

Functional decomposition - one of
best practices

5. Object-Oriented Programming

Dahl and Nygaard moved the
function call stack frame to the
heap and invented OO

Encapsulation?

But perfect encapsulation was in C
and it was then weaken in C++ and
weaken in Java/C# even more

Inheritance?

But C had kind of inheritance - via
enclosing parent structure fields

However in OO upcasting is implicit
- so - more convenienient

Polymorphism?

But it is implemented via vtable with
consists of pointers to functions
which were used long time before

However OO made it more
convenient and eliminates danger

OO enables the plugin architecture!

Dependency inversion

Using interfaces Lower level is dependent on higher level

Polymorphism means that any code
dependency can be inverted

OO languages has absolute control
over direction of code dependen-
cies

Separate components without
dependency

Independent deployability

Independent developability

6. Functional Programming

Lambda-calculus was invented by
Alonzo Church

Variables do not vary!

All race conditions, deadlock
conditions, and concurrent update
problems are due to mutable
variables

Segregation of Mutability good architecture practice

Event Sourcing

We store the transactions, but not the state

When state is needed we count it
Of course we can calculate and save
intermediate states

