Structured programming imposes Removed goto
discipline on direct transfer of
control

f _ Added if/then/else and do/while

function call stack frame

Removed (nested functions

Object-oriented programming k functi it
imposes discipline on indirect unction pointers
transfer of control
e constructors for a class
Added (instance variables on heap
k methods
Removed assignments

Functional programming imposes (
(_(3. Paradigm Overview)—g discipline upon assignment lambda-calculus
Added
immutability

F2 What about Logic programming
languages such as Prolog? Remove
functions

(E4 What about scripting programming
languages such as JavaScript,
Python, Ruby? Remove compilation

1. Nothing else can be removed and ~

_ no other paradigms can exist k4 What about visual programming, low
N code, no code? Remove the code

_ F4 What about ML? Remove predefined logic

_ [Quantum computers?

first "programmer" and inventor of

Dijkstra structured programmer
B6hm and Jacopini proved: all seguence
programs can be constructed from
just three structures selection
4 k iteration
Dijkstra tried to use formal
mathematical proofs for programs But failed - it is too hard

Such proofs are falsifiable (testable)
but not provable

. (If we can't prove statement is false
——{ 4. Structured Programming }— ofs thar e coﬁsider s

4 .
_ Science proofs are more rational Testing shows the presence, not the
_ absence, of bugs
Part Il - Starting with the Bricks: We show correctness by failing to
. . prove incorrectness, despite our
Programming Paradigms _best efforts

U® Programs that use unrestrained
goto cannot be deemed correct no
matter how many tests are applied

_ to it

Functional decomposition - one of
_ best practices

Dahl and Nygaard moved the
function call stack frame to the
heap and invented OO

(

U® But perfect encapsulation was in C
and it was then weaken in C++ and

Encapsulation? weaken in Java/C# even more
-~
U@ But C had kind of inheritance - via
enclosing parent structure fields
Inheritance? (ofs However in OO upcasting is implicit
4 k - S0 - more convenienient

U@ Butitis implemented via vtable with
consists of pointers to functions
which were used long time before

.]] N (oy However OO made it more
_(5. Object-Oriented Programming ’—¥ Polymorphism convenient and eliminates danger

ofs OO enables the plugin architecture!

Using interfaces Lower level is dependent on higher level
_ Dependency inversion (ofy OO languages has absolute control
Polymorphism means that any code over direction of code dependen-
dependency can be inverted cies
/

Separate components without €
_ dependency

_ Independent deployability

\ Independent developabilitD
Lambda-calculus was invented by

Alonzo Church

(

All race conditions, deadlock
conditions, and concurrent update
problems are due to mutable
Variables do not vary! variables
(6. Functional Programming) _ofr Segregation of Mutability good architecture practice
We store the transactions, but not the state
___ ol Event Sourcing (Of course we can calculate and save

k When state is needed we count it intermediate states

