
Part III - Design Principles (SOLID)

Intro

Principles for mid-level software

Goal of principles the creation of structures that

Tolerate change

Are easy to understand

Are the basis of components that 
can be used in many software 
systems

7. SRP: The Single Responsibility Principle

Principle
A module should have one, and only 
one, reason to change

A module should be responsible to 
one, and only one, actor.

Violations Symptom 1: Accidental Duplication

Separate the code that different 
actors depend on!

Symptom 2: Merges

Two different teams, check out the 
Employee class and begin to make 
changes their changes collide & merge!

Separate code that supports 
different actors!

Solutions

The three classes do not know 
about each other +The Facade pattern

Employee is used as a Facade for 
the lesser functions

8. OCP: The Open-Closed Principle

Principle (by Bertrand Meyer in 1988) A software artifact should be
open for extension

but closed for modification

Let easily to add new Views to 
display existing reports in different 
format

9. LSP: The Liskov Substitution Principle

Principle (by Barbara Liskov 
 In 1988)

What is wanted here is something 
like the following substitution 
property: If for each object o1 of 
type S there is an object o2 of type 
T such that for all programs P 
defined in terms of T, the behavior 
of P is unchanged when o1 is 
substituted for o2 then S is a 
subtype of T.

Guiding the Use of Inheritance

Violation The Square/Rectangle Problem

Example with different taxi services interfaces

10. ISP: The Interface Segregation Principle

Principle

User1 uses only op1 but when op2/
op3 are changed then User1 should 
also be recompiled!

Segregated operations

ISP and Language

dynamically typed languages create 
systems that are more flexible and 
less tightly coupled than statically 
typed languages

ISP and Architecture

If no interfaces then changes in D 
will force changes in F and will force 
changes in S

11. DIP: The Dependency Inversion Principle

Principle

The most flexible systems are those 
in which source code dependencies 
refer only to abstractions, not to 
concretions

We want to avoid dependencies on 
VOLATILE concrete elements

Stable Abstractions

Don’t refer to volatile concrete classes

Don’t derive from volatile concrete classes

Don’t override concrete functions

Never mention the name of anything 
concrete and volatile

Factories

Abstract Factory

Dependency Inversion
The source code dependencies are 
inverted against the flow of control

DIP violations cannot be entirely removed

but they can be gathered into a 
small number of concrete 
components and kept separate 
from the rest of the system

Dependency Rule

the dependencies cross that curved 
line in one direction, and toward 
more abstract entities


