Part Ill - Design Principles (SOLID)

Intro

Principles for mid-level software

Goal of principles

the creation of structures that ﬁ

Tolerate change

Are easy to understand

/—(7. SRP: The Single Responsibility Principle)—(

/—< 8. OCP: The Open-Closed Principle)—

N

Are the basis of components that
can be used in many software
systems

A module should have one, and only
one, reason to change

oy A module should be responsible to

one, and only one, actor.

Principle
EE *s. [Employee
P N[} calculatePay
---- > + reportHours
. 7| + save
c X(/
calculatePay reportHours
Violations Symptom 1: Accidental Duplication _l l/

N

regularHours

Separate the code that different
actors depend on!

Two different teams, check out the
Employee class and begin to make
changes

their changes collide & merge!

\ Symptom 2: Merges

(I. Separate code that supports
different actors!

The three classes do not know
about each other

+The Facade pattern

\ Solutions

the lesser functions

(Employee is used as a Facade for

Principle (by Bertrand Meyer in 1988)

open for extension

-

ofs A software artifact should be ~ /~
\ N

Financial
Report

but closed for modification

Financial

‘7

Controller

Screen
Presenter

Print
Presenter

Report
[Interactor

Financial
Database

Let easily to add new Views to Wab
display existing reports in different View
format

PDF
View

/—< 9. LSP: The Liskov Substitution Principle)—

_(10. ISP: The Interface Segregation Principle)—(

% 11. DIP: The Dependency Inversion Principle)—

Principle (by Barbara Liskov

In 1988)

oy What is wanted here is something

like the following substitution
property: If for each object o1 of
type S there is an object 02 of type
T such that for all programs P
defined in terms of T, the behavior
of P is unchanged when o1 is
substituted for 02 then Sis a
subtype of T.

-

\ Guiding the Use of Inheritance

\ Violation

Example with different taxi services interfaces

'

———<I>
Billing License
+ calcFee()
Personal Business
License License
- users
User Rectangle
+setH, +setW
Square
+ setSide
The Square/Rectangle Problem
URI Dispatch Format
Acme.com /pickupAddress/%$s/pickupTime/%$s/dest/%s

/pickupAddress/%$s/pickupTime/%$s/destination/$s

User1

User2

User3

OPS

+0p1 +0p2 +0p3

U® User1 uses only op1 but when op2/
op3 are changed then User1 should
also be recompiled!

Principle

_ ISP and Language

\ ISP and Architecture

EREas
I>— I I>—
U10ps U20ps >—| U30ps
+op1 +0p2 + 0p3
\
OPS
\ ofy Segregated operations 1+0p2 10
dynamically typed languages create
systems that are more flexible and
less tightly coupled than statically
typed languages
U® If no interfaces then changes in D
System S Framework F Database D will force changes in F and will force

changesin S

ofs The most flexible systems are those
in which source code dependencies
refer only to abstractions, not to

concretions

We want to avoid dependencies on
VOLATILE concrete elements

Principle

-

Stable Abstractions

Don't refer to volatile concrete classes

Don’t derive from volatile concrete classes

(

Don’t override concrete functions

Never mention the name of anything
concrete and volatile

Application

\ e

<I>— .

Service |-
Factory

+ makeSvc

T

Service
Factory Impl

——KI

Service

Concrete
Impl

<<creates>>

\

+ makeSvc

Abstract Factory

\ Factories (

\ Dependency Inversion

The source code dependencies dre
inverted against the flow of control

_ DIP violations cannot be entirely removed

but they can be gathered into a
small number of concrete

components

and kept separ

from the rest of the syste

\ Dependency Rule

the dependencies cross that curved
line in one direction, and toward
more abstract entities

