
Part IV - Component Principles

Intro Principles for high-level software
How to build software systems out
of components

12. Components

Components are the units of
deployment

A Brief History of Components

App and function library were
loaded at specific predefined
memory address

Relocatability

Linking loader
Modifies references from the app to libraries

Loads only functions that are needed

External references

External definitions

Linkers

Slow linked builds binary that could
be loaded with fast linker

Murphy’s law of program size
Programs will grow to fill all
available compile and link time

13. Component Cohesion

REP: The Reuse/Release
Equivalence Principle

The granule of reuse is the granule of release.

Reusable element is a release
(version) of set of classes/modules
that make sense to keep together

CCP: The Common Closure Principle

Gather into components those
classes that change for the same
reasons and at the same times.

Separate into different components
those classes that change at
different times and for different
reasons.

This is the Single Responsibility
Principle (SRP) restated for
components

It is closely associated with the
Open Closed Principle (OCP)

CRP: The Common Reuse Principle

Don’t force users of a component to
depend on things they don’t need.

Classes that are not tightly bound to
each other should not be in the
same component

The CRP is the generic version of the ISP

The Tension Diagram for
Component Cohesion

Early in the development of a
project, the CCP is much more
important than the REP, because
developability is more important
than reuse. i.e. always start with monorepo!

Later the project will slide from
developability to the left to
reusability

14. Component Coupling

ADP: The Acyclic Dependencies Principle

Allow no cycles in the component
dependency graph

Developer have working code. But in
the morning the is not working
because another developer has
changed something that the code
was dependent on It is common problem especially on large teams

The Weekly Build

Work four days using local copy of
all the dependencies ignoring other
team members

On the Friday integrate all the
changes together

Sometimes one day is not enough
and integration moves to Thursday
and before. Or team switches to
biweekly builds This scenario will eventually lead to crisis

Eliminating Dependency Cycles

Responsible developers publish
released components and continue
to work on the next tasks

Other developers decide which
release to use

But you have to manage dependencies
There can be no cycles (directed
acyclic graph)

The Effect of a Cycle in the
Component Dependency Graph

Entities now wants to use Authorizer

Breaking the Cycle

Apply the Dependency Inversion
Principle (DIP) Use interfaces

Create a new component that both
Entities and Authorizer depend on.

The “Jitters”

Components structure should be
monitored for cycles. And it will
change over time

Top-Down Design

Components structure does NOT
reflect functionality of the app Instead it reflects

Buildability

Maintainability

The component dependency
structure grows and evolves with
the logical design of the system They are not designed all at the beginning!

Because initially we have no
software to build and maintain

SDP: The Stable Dependencies Principle

Depend in the direction of stability

Stability Stability is related to the amount of
work required to make a change

One sure way to make a software
component difficult to change, is to
make lots of other software
components depend on it

Stability Metrics

Count number of dependencies

Fan-in: Incoming dependencies

Fan-out: Outgoing depenencies.

I: Instability: I = Fan-out / (Fan-in + Fan-out)

I metrics should decrease in the
direction of dependency

Not All Components Should Be Stable

When Stable need to depend on
very Flexible (potentially unstable)
component We use DIP

👏

Abstract Components

SAP: The Stable Abstractions Principle

A component should be as abstract
as it is stable.

👏

Where Do We Put the High-Level Policy?

Introducing the Stable Abstractions Principle
The SAP and the SDP combined
amount to the DIP for components dependencies run in the direction of abstraction

Measuring Abstraction

Nc: The number of classes in the component

Na: The number of abstract classes
and interfaces in the component

A: Abstractness. A = Na / Nc. ranges from 0 to 1

The Main Sequence

The Zone of Pain Examples
database schemas

utility library

The Zone of Uselessness Examples unused abstract classes

Avoiding the Zones of Exclusion
Need to position most of the
compontnts to the Main Sequence

Distance from the Main Sequence

D: Distance. D = |A+I-1|

design can be analyzed for its
overall conformance to the Main
Sequence

Scatterplot of the components

Plot of D for a single component over time

