
1. Reliable, Scalable, and 
Maintainable Applications

Types of complex systems

data-intensive data is its primary challenge

amount of data

complexity of data

speed at which it is changing

compute-intensive CPU cycles are the bottleneck

Standard building blocks

Databases
Store data so that they, or another 
application, can find it again later

Caches
Remember the result of an 
expensive operation, to speed up 

Search indexes
Allow users to search data by 
keyword or filter it in various ways

Stream processing
Send a message to another process, 
to be handled asynchronously

Batch processing
Periodically crunch a large amount 
of accumulated data

Reliability

making systems work correctly, 
even when faults occur

We can only tolerate certain types 
of faults - so "fault-tolerant" or 
"resilient" - is slightly misleading 
term

Fault
One component of the system 
deviating from its spec

Failure

The system as a whole stops 
providing the required service to the 
user

It is impossible to reduce the 
probability of a fault to zero

therefore it is usually best to design 
fault-tolerance mechanisms that 
prevent faults from causing failures

Good idea: Randomly killing 
individual processes without 
warning!

Some faults can't be tolerated and 
should be prevented - e.g. security 
faults

Faults

Hardware Faults

Usually just need to add hardware redundancy

There is a move toward systems 
that can tolerate the loss of entire 
machines by using software fault-tolerance techniques

in preference or in addition to 
hardware redundancy

Software Errors

Human Errors leading cause of outages

Scalability

having strategies for keeping 
performance good, even when load 
increases

Describing Load

few numbers which we call load parameters

requests per second to a web server

the ratio of reads to writes in a database

the number of simultaneously active 
users in a chat room

the hit rate on a cache

etc.

Twitter example

Simple schema

Fan out schema

Hybrid schema

Describing Performance

In batch processing we think about - throughput

the number of records we can 
process per second

the total time it takes to run a job on 
a dataset of a certain size

In online systems - response time
the time between a client sending a 
request and receiving a response

Latency and response time

Response time what the client sees

Latency duration that a request is waiting to be handled

Distribution of values that you can measure

Usually it is better to use percentiles

the customers with the slowest 
requests are often those who have 
the most data on their accounts 
because they have made many 
purchases—that is, they’re the most 
valuable customers

Amazon has also observed that a 
100 ms increase in response time 
reduces sales by 1%, and others 
report that a 1-second slowdown 
reduces a customer satisfaction 
metric by 16%

percentiles are often used in service 
level objectives (SLOs) and service 
level agreements (SLAs)

head-of-line blocking

Queueing delays often account for a 
large part of the response time at 
high percen- tiles

Due to this effect, it is important to 
measure response times on the 
client side!

When generating load artificially in 
order to test the scalability of a 
system, the load-generating client 
needs to keep sending requests 
independently of the response time

tail latency amplification

if an end-user request requires 
multiple back-end calls (some of 
which can be slow)

Approaches for Coping with Load

scaling up (vertical scaling)

scaling out (horizontal scaling)

elastic systems

Automatically scaling systems

can be useful if load is highly 
unpredictable

There is no one-size-fits-all 
scalable architecture Depends on load parameters

which operations will be common 
and which will be rare

Maintainability

making life better for the engineer-
ing and operations teams who need 
to work with the system

Operability: Making Life Easy for Operations
Make it easy for operations teams to 
keep the system running smoothly

Simplicity: Managing Complexity

Make it easy for new engineers to 
understand the system, by removing 
as much complexity as possible 
from the system

Accidental complexity

if it is not inherent in the problem 
that the software solves (as seen by 
the users) but arises only from the 
implementation

Best tool to remove complexity is - abstraction

Evolvability: Making Change Easy

Make it easy for engineers to make 
changes to the system in the future, 
adapting it for unanticipated use 
cases as requirements change

Also known as extensibility, 
modifiability, or plasticity

Tools and patterns

TDD

Refactoring

and higher level approaches


