
3. Storage and Retrieval

you do need to select a storage engine that is appropriate for your application
big difference between storage engines

optimized for transactional workloads

optimized for analytics

Data Structures That Power Your Database

log
append-only sequence of records

the cost of a lookup is O(n)

index

a signpost and helps you to locate 
the data you want

additional structure that is derived 
from the primary data incurs overhead, especially on writes

compact  & merge segments later

Hash Indexes

Issues and solutions

File format Binary format is better

Deleting records Use tombstone record

Crash recovery
Storing snapshot of each segment’s 
hash map on disk

Partially written records
Checksums to detect and ignore 
corrupted records in logs

Concurrency control
Use one writer thread

Read concurrently by multiple threads

Limitations
Hash tables must fit in memory

Range queries are not efficient

SSTables and LSM-Trees (log-
structured school)

Sorted String Table (SSTable)

sequence of key-value pairs is 
sorted by key

each key only appears once within 
each merged segment file

SSTable advantages over log segments

Merging segments is simple and efficient

even if the files are bigger than the 
available memory

mergesort algorithm

keep the value from the most recent segment

No longer need to keep an index of 
all the keys in memory Sparse index in memory

Constructing and maintaining SSTables

Writes to memory - memtable

Save memtable to disk as recent segment

When read first search in memtable, 
then in segments from the most-
recent then next-older

Run merge & compact from time to time

Problem with SSTable In case of failure we lose the most 
recent writes to memtable

To avoid this we keep unsorted log 
on disk for every write. That log is 
discarded when memtable is saved 
to disk

Making an LSM-tree out of SSTables

Log-Structured Merge-Tree (LSM-Tree)

keeping a cascade of SSTables that 
are merged in the background simple and effective!

Performance optimizations

slow when looking up keys that do 
not exist in the database use additional Bloom filters

different strategies for compacting & merging
size-tiered compaction

leveled compaction

B-Trees (update-in-place school)

The most widely used indexing structure!

Like SS-Tables keep key-value pairs sorted by key
efficient key-value lookups

efficient range queries

Different from SS-Tables

SS-Tables save variable-size segments

B-Trees break the database into 
fixed-size blocks/pages - usually 
4Kb

read/write one page at a time

as HDD/SSD disks are also arranged 
in fixed-size block

Page references construct a tree of pages on disk

leaf page page containing individual keys

branching factor
How many references to next level pages Usually few hundreds

Usually 3-4 levels are enough

Making B-trees reliable

Crash during write can create 
orphan pages

Write-ahead log (WAL) aka "redo log"

append-only file to which every B-
tree modification must be written 
before it can be applied to the 
pages of the tree itself

After crash use log to restore B-tree 
to consistent state

Concurrency control for multiple threads latches (lightweight locks)

B-tree optimizations

Copy-on-write Instead of WAL for crash recovery

Not sort entire key but abbreviate it
Save some space

More branching factor, fewer levels

Leaf pages appear in sequential 
order on disk

Faster for scan over large part of key range

However it is difficult as data is growing

Extra pointers in the tree E.g. next, previous leaf page pointers
Helps scanning keys without 
jumping back to parent pages

B-Tree variants E.g. fractal trees
borrow some log-structured ideas 
to reduce disk seeks

Comparing B-Trees and LSM-Trees

LSM-trees are typically faster for writes

B-trees are thought to be faster for reads

But need to test systems with your 
particular workload in order to make 
a valid comparison

Advantages of LSM-trees

B-tree index
Must write every piece of data at least twice

WAL

Leaf page

Perhaps more leaf page and parent 
page in case of split

Overhead of writing whole page at a time

Log-structured indexes rewrite data multiple times
due to repeated compaction and 
merging of SSTables

Write amplification

One write causes multiple writes

It is a problem for SSD!
Where can overwrite blocks only 
limited number of times

In write-heavy applications it 
becomes bottleneck

LSM-trees have lower write 
amplification

LSM-trees can be compressed better

Downsides of LSM-trees

Compaction process can sometimes 
interfere with the performance of 
ongoing reads and writes

B-trees can be more predictable (at 
higher percentiles)

In case of high write rates
Can't complete compaction

the number of unmerged segments 
on disk keeps growing until you run 
out of disk space

reads also slow down because they 
need to check more segment files

B-trees attractive in databases that 
want to offer strong transactional 
semantics

locks for key can be directly 
attached to the tree

Other Indexing Structures

Secondary indexes Not unique

Two ways

Can have "posting list" for each value

Making each key unique by 
appending a row identifier to it

For both ways can use B-trees and 
log-structured indexes

Storing values within the index

Index can store values

Value

Or reference To location in "heap file"

It avoids duplicating when multiple 
indexes just refer the same record

Efficient when updating record 
without changing key - of new value 
is not larger Otherwise need to

update indexes

or use forward pointer in the old 
heap location

Clustered index When we store value within the index

Compromise between two approaches
"covering index", or "index with 
included columns"

stores some of a table’s columns 
within the index

can speed up reads but
require additional storage

can add overhead on writes

Multi-column indexes

Concatenated index

combines several fields into one key 
by appending one column to another

most common type of multi-column index

Multi-dimensional indexes

important for geospatial data 
(latitude and longitude)

R-trees https://en.wikipedia.org/wiki/R-tree

Another examples

(red, green, blue)
to search for products in a certain 
range of colors

(date, temperature)

search for all the observations 
during the year 2013 where the 
temperature was between 25 and 
30°C

Full-text search and fuzzy indexes

search for similar keys "fuzzy" querying

Lucene

able to search text for words within 
a certain edit distance (number of 
letters added/removed/replaced)

Levenshtein automaton

Other
document classification and 
machine learning

Keeping everything in memory

Inmemory databases Memcached

But with durability

Hardware support - e.g. battery-
powered RAM

Writing log changes to disk

Writing periodic snapshots to disk

Replicating in-memory db on other machines

They are faster

Not because they don't use disk Disk data can be cached in RAM by OS

Because they can avoid the 
overheads of encoding/decoding 
data structures

Provide data models that is hard to 
implement with disk-based indexes e.g.

Priority Queues

Sets

anti-caching in-memory approach 
can be used for disk-based 
databases

evicting the least recently used data 
from memory to disk when there is 
not enough memory

loading it back into memory when it 
is accessed again in the future

requires indexes to fit entirely in memory

Further ideas

non-volatile memory (NVM) 
technologies become more widely 
adopted

Transaction Processing or Analytics?

Transaction processing

Means low-latency reads and writes

needn’t necessarily have ACID 
(atomicity, consistency, isolation, 
and durability) properties

opposed to batch processing which only run periodically

Online transaction processing 
(OLTP) pattern

Online analytic processing (OLAP) pattern

reports that help the management 
of a company make better decisions 
(business intelligence)

Data Warehousing

separate database for OLAP

read-only copy of the data in all the 
various OLTP systems in the 
company Extract–Transform–Load (ETL)

The divergence between OLTP 
databases and data warehouses

drill-down

slicing and dicing

Stars and Snowflakes: Schemas for Analytics

star schema

aka "dimensional modeling"

Facts table
Attributes

References to dimension tables

snowflake schema

dimensions are further broken down 
into subdimensions

more normalized than star schemas

but star schemas are often 
preferred because they are simpler 
for analysts to work with

Column-Oriented Storage

fact tables are often over 100 
columns wide

But typical data warehouse query 
only accesses 4 or 5 of them at one 
time

Idea is simple don’t store all the values from one row together
but store all the values from each 
column together instead

Column Compression

Techniques bitmap encoding

column with n distinct values and 
turn it into n separate bitmaps

one bitmap for each distinct value

one bit for each row

if n is very small bitmaps can be stored with one bit per row

if n is bigger

A lot of zeros (sparse bitmap)

the bitmaps can additionally be run-
length encoded 9, 1 = 9 zeros, 1 one, rest zeros

Column-oriented storage and 
column families column families

NOT a "column-oriented"!

Inherited from "Bigtable"

within each column family, they 
store all columns from a row 
together, along with a row key

do not use column compression

Examples
Cassandra

HBase

Memory bandwidth and vectorized processing

using the bandwidth from main 
memory into the CPU cache

chunk of compressed column data 
that fits comfortably in the CPU’s L1 
cache

iterate through it in a tight loop (that 
is, with no function calls)

avoiding branch mispredictions and 
bubbles in the CPU instruction 
processing pipeline

making use of single-instruction-
multi-data (SIMD)

bitwise AND and OR

vectorized processing

Sort Order in Column Storage

compression effect is strongest on 
the first sort key

The second and third sort keys will 
be more jumbled up, and thus not 
have such long runs of repeated 
values

Several different sort orders

We should replicate data on 
different machines to not lose them 
in case of failure

Different machines can have the 
same data sorted in different ways

In a column store, there normally 
aren’t any pointers to data 
elsewhere only columns containing values.

Writing to Column-Oriented Storage

writes to column-oriented storages 
are more difficult

update-in-place approach (like B-trees use) not possible with compressed columns

Solution LSM-trees in memory then saved to disk

Aggregation: Data Cubes and 
Materialized Views

materialized aggregates Caching aggregates

materialized view

When the underlying data changes, 
a materialized view needs to be 
updated, because it is a denormal-
ized copy of the data make writes more expensive

materialized views are not often 
used in OLTP databases

data cube

common special case of a materialized view

grid of aggregates grouped by 
different dimensions

disadvantage

doesn’t have the same flexibility as 
querying the raw data

Only set conditions to dimensions

https://en.wikipedia.org/wiki/R-tree

