
4. Encoding and Evolution

Evolvability

Code changes is not instant

Servers may perform rolling 
upgrade (staged rollout)

Clients may continue using old code

Old and new code need to interact
Backward compatibility

Forward compatibility

Formats for Encoding Data

Two representations of data
In-memory

Encoded to pass it somewhere Can't keep pointers

Need translations between two 
representations

encoding (serialization or marshalling)

decoding (parsing, deserialization, 
unmarshalling)

Language-Specific Formats

Benefits
Convenient, due to minimal 
additional code

Problems

Tied to specific language

Security breaches sometimes when 
decoding instantiates arbitrary 
classes

Versioning is often afterthought

Efficiency is often afterthought

So usually it is a and idea to use 
your language’s built-in encoding!

JSON, XML, and Binary Variants

Text and somewhat human-readable

XML too verbose and unnecessarily complicated

JSON

CSV

Problems

Ambiguity between strings and 
numbers and different numbers Float vs Int vs Decimal

Not support binary data Base64 as workaround

Data schemas exist for XML and 
JSON but is not widely used

CSV doesn't have schema

Main advantage

Easy to agree on their usage to 
interchange data between organisa-
tions

Binary encoding

for JSON
MessagePack, BSON, BJSON, 
UBJSON, BISON, and Smile

for XML WBXML and Fast Infoset

Problem

As they don't have schema they still 
need to encode field names Due to this not a big saving

But they lose human readability

Thrift and Protocol Buffers

Thrift Two different formats
BinaryProtocol

CompactProtocol

Protocol Buffers

They both use field tags instead of field names

Field tags and schema evolution

Forward and backward compatibility 
because of tags

Just can't reuse tags

And can't add/remove required fields

Datatypes and schema evolution

Can change data types Int32 -> int64

Protocol Buffers Can change optional to repeated

Apache Avro

nothing to identify fields or their datatypes
encoding simply consists of values 
concatenated together

Reader and writers should use exact 
same schema?

The writer’s schema and the 
reader’s schema

Avro reader knows writer schema 
and reader schema - and it analyses 
them to decide how to parse 
records

Can only add/remove fields that 
have default values

But what is the writer’s schema? contexts

Large file with lots of records Schema is once at the beginning of the file

Database with individually written records Each record has version number of schema

Sending records over a network connection

Processes can negotiate the 
schema version on connection 
setup

Dynamically generated schemas Advantage
Schema doesn't contain field tags

As result it is friendlier to dynami-
cally generated schemas (e.g. from 
database table)

Code generation and dynamically 
typed languages Avro can be used w/o code generation Which is good for dynamically typed languages

The Merits of Schemas

binary encodings based on schemas are good

More compact

Schema is a documentation

Database of schemas can be tested 
for backward/forward compatibility 
before deploy

For statically typed languages code 
generation from schemas enables 
type checking at compile time

Schema evolution allows flexibility 
that gives schema-on-read 
approach but also provides better 
guarantees and tooling

Modes of Dataflow

Dataflow Through Databases

Single process that access db sending a message to your future self Need backward compatibility

Several processes access db older and newer code read and write db

Forward compatibility is also required

During read-update-write important 
not to lose fields that you don't 
know yet

Different values written at different times

data outlives code

Rewriting (migrating) data to new schema
Possible

But expensive on large datasets

So - different rows have different 
versions of schema

Archival storage

Can use the same latest schema 
version for all rows, and data 
becomes immutable

Good for formats like Avro

Also good for analytical-friendly 
formats like Parquet

Dataflow Through Services: REST and RPC

clients and servers API exposed by the server is known as a "service"

javascript code inside web browser 
can become a client Ajax

server can be a client to another server

Service-Oriented Architecture 
(SOA) aka "microservices architec-
ture"

Makes the app easier to change and 
maintain by making services 
independently deployable and 
evolvable

data encoding used by servers and 
clients must be compatible across 
versions of the service API

Web services
REST

Is a design philosophy that builds on 
principles of HTTP

API designed according to the 
principles of REST is called RESTful

OpenAPI aka Swagger used to 
describe RESTful API

SOAP WSDL used to describe SOAP API Can generate code for server/client

The problems with remote 
procedure calls (RPCs)

Different approaches existed

EJB and RMI

DCOM

CORBA

Call remote function like you call it local "location transparency"

This approach flawed!

Network calls are unpredictable

Network calls can return timeout

Retries can actually cause multiple calls You should implement deduplication (idempotence)

Latency can vary

Objects should be encoded Can be a problem for large objects

Client and server can be written in 
different languages Data types can be different

So - don't hide remote calls!

Current directions for RPC

New RPC frameworks

Thrift and Avro has their RPC support

gRPC for ProtoBuf

Finagle uses Thrift

Rest.li uses JSON over HTTP

New features

Futures (promises)
to encapsulate asynchronous 
actions that may fail

Streams series of requests and responses

Service Discovery

Custom RPC protocols with a binary encoding Better performance

But RESTful API is good for experimentation and debugging

Data encoding and evolution for RPC backward and forward compatibility properties inherited from selected encoding

Message-Passing Dataflow

asynchronous message-passing systems

message

message broker
also called a "message queue" or 
"message-oriented middleware"

Advantages over RPC

can act as a buffer improve system reliability

can redeliver messages to a process 
that has crashed prevent messages from being lost

avoids the sender needing to know 
the IP address and port number of 
the recipient

allows one message to be sent to 
several recipients

logically decouples the sender from the recipient

Message brokers

typically don’t enforce any 
particular data model

message is just sequence of bytes 
with some metadata

If consumer re-publishes messages 
to another topic it should take care 
of unknown fields!

Distributed actor frameworks

actor model

each actor can receive and send messages

It can have state

It is single threaded

Benefits
No need to deal with threads (race 
conditions, deadlocks)

Distributed actors used to scale app 
to multiple nodes

Location transparency works better with actors
Because actors already assume that 
message can be lost

Most popular frameworks

Akka
No support for forward/backward compatibility

But can use Protobuf To support rolling updates

Orleans No support for rolling update

Erlang Rolling updates are hard

http://Rest.li

