
Part V - Architecture

15. What is Architecture?

Software architect SHOLD write the code!

Architecture

the shape given to the system to 
facilitate the development, 
deployment, operation, and 

The strategy behind that facilitation 
is to leave as many options open as 
possible, for as long as possible.

Development
To make it easy to develop, for the 
team(s) who develop it

Deployment To make it easily deployed with a single action

Operation
Because hardware is cheap

the cost equation leans more toward 
development, deployment, and 
maintenance

To make the operation of the system 
readily apparent to the developers

Maintenance

The most costly

To determine the best place and the 
best strategy to add a new feature 
or to repair a defect

Keeping Options Open

Two elements of the system

Policy Business rules and procedures

Details
IO devices, databases, web 
systems, etc

To delay and defer decisions about details Because later you will have more information!

A good architect maximizes the 
number of decisions not made.

16. Independence

Use Cases

A shopping cart application with a 
good architecture will look like a 
shopping cart application

Operation

Should support throughput and 
response time required by use 
cases

Development
Conway’s law

Any organization that designs a 
system will produce a design whose 
structure is a copy of the organiza-
tion’s communication structure.

Deployment The goal is “immediate deployment”

Leaving Options Open makes the system easy to change

Decoupling Layers Db, business rules, UI, etc...

Decoupling Use Cases

If you decouple the elements of the 
system that change for different 
reasons

then you can continue to add new 
use cases without interfering with 
old ones

Decoupling Mode

Separated services for different use 
cases with different throupu/
bandwidth/etc requiremens

Independent Developability UI, business rules, etc

Independent Deployability

should be possible to hot-swap 
layers and use cases in running 
systems

adding a new use case could be a 
simple as adding a few new jar files 
or services

Duplication

False duplications
When one change requires changes 
in every duplicate

True duplications

When duplicated parts have 
different paths - change rates and 
change reasons

Decoupling Modes (Again)

Source level

Deployment level

Service level

A good architecture will allow a 
system to be born as a monolith, 
deployed in a single file, but then to 
grow into a set of independently 
deployable units, and then all the 
way to independent services and/or 
micro-services

Later, as things change, it should 
allow for reversing that progression 
and sliding all the way back down 
into a monolith

17. Boundaries: Drawing Lines

Software architecture is the art of 
drawing lines that I call boundaries

A Couple of Sad Stories

Author described examples of too 
early made decisions about too 
complex architectures with many 
services and layers

FitNesse

Good example of postponing the 
decision to use DB - used in-
memory data. Later DB was still not 
needed - file storage was good 
enough

Which Lines Do You Draw, and 
When Do You Draw Them?

Database interface lives in Business 
Rules component

What About Input and Output?

The IO is irrelevant

Plugin Architecture
DB and GUI can be plugins for 
Business Rules

The Plugin Argument

Arranging our systems into a plugin 
architecture creates firewalls across 
which changes cannot propagate

If the GUI plugs in to the business 
rules, then changes in the GUI 
cannot affect those business rules

18. Boundary Anatomy

Boundary Crossing Requires to manage source code dependency
Because change of the callee 
requires recompilation of the caller

The Dreaded Monolith

source-level decoupling mode

function call from a low-level client 
to a higher-level service

high-level client needs to invoke a 
lower-level service

dynamic polymorphism is used to 
invert the dependency against the 
flow of control

Deployment Components
deployment-level decoupling mode

Dynamically linked library (DLL, jar, gem, etc) deployment does not involve compilation

Threads not architectural boundaries or units of deployment
a way to organize the schedule and 
order of execution

Local Processes

A much stronger physical architec-
tural boundary

The architectural goal is for lower-
level processes to be plugins to 
higher-level processes

Communication across local 
process boundaries involve 
operating system calls, data 
marshaling and decoding, and 
interprocess context switches, 
which are moderately expensive

Chattiness should be carefully limited

Services

The strongest boundary

May, or may not, operate in the 
same physical processor or 
multicore

Communications across service 
boundaries are very slow compared 
to function calls

Avoid chatting where possible

Must deal with high levels of latency

19. Policy and Level

Software systems are statements of 
policy (by which inputs are trans-
formed into outputs)

Part of the art separating those policies from one another
and regrouping them based on the 
ways that they change

Level

the distance from the inputs and outputs

Bad architecture

Good architecture

Lower-level components should 
plug in to higher-level components

20. Business Rules

Business rules = Critical Business Rules

rules or procedures that make or 
save the business money

They would make or save money 
even if they were executed manually

Usually require data Critical Business Data

Entity

a small set of Critical Business 
Rules operating on Critical Business 
Data

Loan entity as a class in UML

Use Case

a description of the way that an 
automated system is used

describes application-specific 
business rules as opposed to the 
Critical Business Rules

Example use case

does not describe the user interface 
other than to informally specify the 
data coming in and our from that 
interface

It is impossible to tell if app is web, 
or console, or thick client, or a pure 
service

Entities have no knowledge of the 
use cases that control them

Use cases are lower than Entities 
because they are closed to inputs of 
specific system

Request and Response Models
Use cases expect input data, and 
they produce output data

21. Screaming Architecture

What architecture "screams"
Good

Home, Library, Accounting System, 
Healthcare System, ...

Bad Rails, Spring/Hibernate, ASP...

The Theme of an Architecture
Architectures should not be 
supplied by frameworks

The Purpose of an Architecture

Good architectures are centered on use cases Not on the bricks they are made of!

Frameworks are options to be left 
open, decided later, even changed 
later

But What About the Web? The web is not an architecture! It is a delivery mechanism - an IO device

Frameworks Are Tools, Not Ways of Life

Develop a strategy that prevents the 
framework from taking over that 
architecture

Testable Architectures

Entity objects should be plain old 
objects that have no dependencies 
on frameworks or databases or 
other complications

Should be testable without any of 
the complications of frameworks

22. The Clean Architecture

Clean Architecture

Some architecture ideas evolved in 
the last several decades

Hexagonal Architecture (also known 
as Ports and Adapters)

DCI

BCI

All of them have characteristics

Independent of frameworks

Testable

Independent of the UI

Independent of the database

Independent of any external agency.

The clean architecture (integrating all these architectures)

The Dependency Rule

Source code dependencies must 
point only inward, toward higher-
level policies.

1. Entities enterprise-wide Critical Business Rules

2. Use Cases application-specific business rules

3. Interface Adapters

a set of adapters that convert data 
from the format most convenient for 
the use cases and entities, to the 
format most convenient for some 
external agency such as the 
database or the web

4. Frameworks and Drivers

composed of frameworks and tools 
such as the database and the web 
framework

Only Four Circles? It is just a schema - there can be more circles
However, the Dependency Rule 
always applies

Crossing Boundaries

the flow of control

It begins in the controller

moves through the use case

and then winds up executing in the presenter

Resolve contradiction with 
Dependency Rule by using the 
Dependency Inversion Principle

Which Data Crosses the Boundaries
Basic structs: objects or hash maps

in the form that is most convenient 
for the inner circle

Don't use Entity or Database Row!

A Typical Scenario

A typical scenario for a web-based Java system utilizing a database

23. Presenters and Humble Objects

The Humble Object Pattern

a design pattern that was originally 
identified as a way to help unit 
testers to separate behaviors that 
are hard to test from behaviors that 
are easy to test

Presenters and Views
View is the humble object that is hard to test

Presenter is the testable object

Testing and Architecturetestability is an attribute of good architectures

Database Gateways

Between the use case interactors 
and the database

Data Access Interfaces

contain methods for every create, 
read, update, or delete operation 
that can be performed by the 
application on the database

Gateway's implementation is the 
humble objectit simply uses SQL

Interactors are not humble because 
they encapsulate app-specific 
business rules

Testable, because the gateways can 
be replaced with appropriate stubs 
and test-doubles

Data Mappers

Object relational mapper (ORM)
would be better named “data mappers”

because they load data into data 
structures from relational database 
tables

ORMs form another kind of Humble 
Object boundary between the 
gateway interfaces and the 
database

Service Listeners

Humble Object pattern is creating a 
service boundary

The application

will load data into simple data 
structures and then pass those 
structures across the boundary to 
modules that properly format the 
data and send it to external services

The service

receives data from the service 
interface and format it into a simple 
data structure that can be used by 
the application - and that is passed 
across the service boundary

24. Partial Boundaries

Full-fledged architectural 
boundaries are expensive

That's why Agile community don't 
like such designYAGNI: “You Aren’t Going to Need It.”

However good architect still can 
implement it PARTIALLY!

Skip the Last Step

Do all the work to create indepen-
dent componetsbut keep them together in the same component

It requires the same amount of work

But it requires less administration: 
no version number tracking, no 
release management

Q: But how to quickly find if the 
team is building a good architecture 
when everything inside single 
component? Probably by using the 
metrics described in Part IV!

One-Dimensional Boundaries

The full-fledged architectural 
boundary uses reciprocal boundary 
interfaces to maintain isolation in 
both directions. Which is expensive!

The Strategy pattern

It is cheaper. And it sets the stage 
for a future architectural boundary

But can degrade if ServiceImple will 
start accessing Client w/o interface

FacadesThe Facade pattern
Even simpler boundary (dependen-
cy inversion is sacrificed)

25. Layers and Boundaries

Hunt the WumpusFollowing the Dependency Rule

Clean Architecture?
The revised diagramSimplified diagram

Crossing the StreamsAdding a network component

Splitting the Streams

The higher-level policy manages the player

Adding a micro-service API 
(PlayerManagement is handled by a server)

Software Architect, you must see the future 

😊

26. The Main Component
The Ultimate Detail

the initial entry point of the system

the dirtiest, lowest-level policy/module

only OS depends on it

located in the outermost circle of 
the clean architecture

27. Services: Great and Small

Service Architecture?

The architecture of a systemis defined by boundaries

that separate high-level policy from 
low-level detail

and follow the Dependency Rule

Services

are little more than expensive 
function call

do not define an architecture!

Service Benefits?

The Decoupling Fallacy

Can still be coupled by shared 
resources within a processor, or on 
the network

They are strongly coupled by the 
data they share

Example: a new field is added to a 
data record that is passed between 
services

The Fallacy of Independent 
Development and Deployment

services are not the only option for 
building scalable systems

Large systems can also be built 
from monoliths and component-
based systems

cannot always be independently 
developed, deployed, and operated

The Kitty ProblemServices arranged to implement the taxi aggregator system

Now if we need to add kitty delivery 
service we need to change ALL of 
the services!

Objects to the Rescue

Kitty Problem can be solved using 
component-based architecture

Using an object-oriented approach to deal with 
cross-cutting concerns

Component-Based Services
Each service has its own internal component design, enabling 
new features to be added as new derivative classes

Cross-Cutting Concerns

Not services, but components 
inside the services define architec-
tural boundaries!

Services must be designed with internal 
component architectures that follow the 
Dependency Rule

28. Test Boundaries

The tests are part of the system

Tests as System Components

Tests follow the Dependency Ruletests are the outermost circle in the architecture

Tests are independently deployable

most of the time they are deployed 
in test systems, rather than in 
production systems

Tests are the most isolated system component

Design for Testability

Fragile Tests Problem
Small change may break hundreds of tests

The solution is to design for testability.

Rule #1Don’t depend on volatile thingsGUIs are volatile

The Testing API

a superset of the suite of interactors 
and interface adapters that are used 
by the UI

Structural CouplingWhen test structures are dependent 
on system structures

The role of the testing API is to 
prevent structural coupling 
- to hide the structure of the 
application from the tests

Security

The superpowers of the testing API 
could be dangerous if they were 
deployed in production systems

should be kept in a separate, 
independently deployable 
component

29. Clean Embedded Architecture

firmware
hard to change as hardware evolves

Stop writing firmware! Write software!

App-titude Test

Kent Beck's 3 activities

1. make it workYou are out of business if it doesn’t work

2. make it right

Refactor the code so that you and 
others can understand it and evolve 
it as needs change or are better 
understood

3. make it fast
Refactor the code for “needed” 
performance

Much of embedded systems are 
written with "make it work" and 
"make it fast" in mind

The Mythical Man-Month, Fred 
Brooks suggestsplan to throw one away.

Learn what works, then make a 
better solution

App-titude Test = Getting an app to work

The Target-Hardware Bottleneck

When embedded code is structured 
without applying clean architecture 
principles and practices

you will often face the scenario in 
which you can test your code only 
on the target

A Clean Embedded Architecture Is a 
Testable Embedded Architecture

Layers

Three layers

Software and firmware intermingling 
is an anti-pattern

The Hardware Is a Detail
Hardware abstraction layer (HAL)

the firmware could provide 
Led_TurnOn(5)

the HAL provides Indicate_ 
LowBattery() based lower level 

Don’t Reveal Hardware Details to 
the User of the HAL

The Processor Is a Detail

all of the software should be 
processor independent

but not all of the firmware can be

Processor abstraction layer (PAL)
Firmware above the PAL could be 
tested off-target

The Operating System Is a Detailoperating system abstraction layer (OSAL)

A clean embedded architecture’s 
software is testable off the target 
operating system

Programming to Interfaces and 
Substitutability

A clean embedded architecture is 
testable within the layers because 
modules interact through interfaces

DRY Conditional Compilation Directives

Don’t Repeat Yourself (DRY) principle

If the HAL provides a set of 
interfaces, instead of using 
conditional compilation, we could 
use the linker or some form of 
runtime binding to connect the 
software to the hardware


