
Part VI - Details

30. The Database Is a Detail

The database is NOT an architectural element! The data model IS!

Relational Databases

Many data access frameworks allow 
database rows and tables to be 
passed around the system as 
objects

Allowing this is an architectural error

It couples the use cases, business 
rules, and in some cases even the 
UI to the relational structure of the 
data

Why Are Database Systems So Prevalent? Because of disks - they are slow

File systems are document-based Hard to find file by content

Database systems are content-based Poor at storing/retrieving opaque documents

What If There Were No Disk?

Disks are dying breed

Data will soon be stored in RAM only
In a form of linked lists, trees, hash 
tables, stacks, queues, etc.

This is what we already do after we 
loaded data from dabadase!

Details

We should not care about the form 
that the data takes while it is on the 
surface of a rotating magnetic disk

But What about Performance?

it’s a concern that can be entirely 
encapsulated and separated from 
the business rules that’s a low-level concern

Anecdote

Sometimes there is no architectural 
rationale for using a database, but 
there is a marketing/political 
rationale

31. The Web Is a Detail

The web is just an a series of 
oscillations that move back and 
forth between

putting all the computer power in 
central servers

and putting all computer power out 
at the terminals

The Endless Pendulum As architects, though, we have to 
look at the long term

Those oscillations are just short-
term issues that we want to push 
away from the central core of our 
business rules

The Upshot
The GUI is a detail The web is a GUI. So the web is a detail

The WEB is an IO device

32. Frameworks are Details

Framework Authors
Frameworks solve the author's 
problems, not yours Your problems do overlap, but to a limited extent

Asymmetric Marriage

You must make a huge commitment 
to the framework

Yhe framework author makes no 
commitment to you whatsoever

The Risks
Frameworks tend to violate he 
Dependency Rule

They ask you to inherit their code 
into your business objects — your 
Entities (the innermost circle)!

The Solution

Don’t marry the framework!

You can use the framework, still

If the framework wants you to derive 
your business objects from its base 
classes, say no!

Derive proxies instead, and keep 
those proxies in components that 
are plugins to your business rules.

I Now Pronounce You ...

There are some frameworks that 
you simply must marry

C++ STL

Java the standard library

it should still be a decision

33. Case Study: Video Sales

The Product the software for a website that sells videos

Use Case Analysis

Component Architecture

Yet we still can deploy them as five 
or just two dll/jar files

one for views, presenters, 
interactors, controllers, and 
utilities, respectively

or views and presenters in one file, 
and everything else in the other

Dependency Management

the Dependency Rule

All dependencies cross the 
boundary lines in one direction, and 
they always point toward the 
components containing the higher-
level policy

34. The Missing Chapter

Package by Layer
Package by Feature

Ports and Adapters 
(domain-driven design)

Package by Component

A better architecture

Definition of a component

A grouping of related functionality 
behind a nice clean interface, which 
resides inside an execution 
environment like an application https://c4model.com/

The Devil Is in the Implementation Details
The first three approaches allow you 
to implement details in a wrong way

Organization versus Encapsulation

All four architectural approaches are the same

But they have different encapsula-
tion options (what should be made 
PUBLIC)

Grayed-out types are where the access modifier can be made more restrictive

The fewer PUBLIC types you have, 
the smaller the number of potential 
dependencies

Other Decoupling Modes

In Java 9 you can make a distinction 
between types that are public and 
types that are published

You can decouple your dependen-
cies at the source code level

by splitting code across different 
source code trees

Conclusion: The Missing Advice

Think about

how to map your desired design on 
to code structures

how to organize that code

which decoupling modes to apply 
during runtime and compile-time

Leave options open where applicable but be pragmatic

take into consideration

the size of your team, 

their skill level

the complexity of the solution

in conjunction with
your time

and budgetary constraints

Also
think about using your compiler

to help you enforce your chosen 
architectural style

and watch out for coupling in other areas, such as data models

https://c4model.com/

