{r”’ The database is NOT an architectural element! oy The data model IS!

4

Many data access frameworks allow
database rows and tables to be It couples the use cases, business
passed around the system as rules, and in some cases even the
. objects Ul to the relational structure of the
Relational Databases _ "® Allowing this is an architectural error data
File systems are document-based Hard to find file by content
Why Are Database Systems So Prevalent? Because of disks - they are slow f
e _ Database systems are content-based Poor at storing/retrieving opaque documents
Disks are dying breed
/_< 30. The Database Is a Detail D_\ What If There Were No Disk? (ofs In a form of linked lists, trees, hash This is what we already do after we
\ Data will soon be stored in RAM only - tables, stacks, queues, etc. loaded data from dabadase!
1. We should not care about the form
that the data takes while it is on the
_ Details surface of a rotating magnetic disk
L it's a concern that can be entirely
encapsulated and separated from
_But What about Performance? - the business rules that's a low-level concern
L Sometimes there is no architectural
rationale for using a database, but
there is a marketing/political
\ Anecdote rationale

putting all the computer power in

+fy The web is just an a series of
central servers

oscillations that move back and

forth between (and putting all computer power out

k at the terminals

ofy Those oscillations are just short-

31. The Web | D i term issues that we want to push
- The Web |s a Detal k The Endless Pendulum As architects, though, we have to away from the central core of our
__look at the long term business rules
The GUI is a detail The web is a GUI. So the web is a detail

\ The Upshot f

_ ofs The WEB is an 10 device

Frameworks solve the author's

Framework Authors problems, not yours Your problems do overlap, but to a limited extent

You must make a huge commitment
to the framework

|:| . .
’ Asymmetric Marriage (Yhe framework author makes no
(\ commitment to you whatsoever

They ask you to inherit their code

) U® Frameworks tend to violate he into your business objects — your
The Risks Dependency Rule Entities (the innermost circle)!
-
r—< 32. Frameworks are Details)—
1. Don't marry the framework!
__The Solution (If the framework wants you to derive ofy Derive proxies instead, and keep
your business objects from its base those proxies in components that
K You can use the framework. still classes, say no! are plugins to your business rules.
C++ STL

There are some frameworks that
you simply must marry (
(_ Java the standard library

\ | Now Pronounce You ...

k 1. it should still be a decision

The Product the software for a website that sells videos

= ,"—- - \ Purchase
. P:;Z:ize ;< Streaming
Author N P < License
----- Purchaser
Submit
Video
Descriptiol |

-

Purchase
Download
License

Purchase
Business
License

View
Catalog as

————

-

Catalog as
Viewer

Publish Stigain
—>(Videoin Video <
\ Series
Admi

Remove Viewer

video from
Series

Set
License
Price

Use Case Analysis

< \/i i Admin Admin s EE Admin
f_(33. Case Study: Video Sales)— %dmm Views %Pw“ms %mmmm 5, Convoters
)
Author Author ES Author
%E“‘m Views % Presenters % Interactors [% Controllers
[
Purchaser Purchaser Purchaser ES Purchaser
Views Presenters Interactors | :E Controllers
3
' Catalog
Sialog View Presenter
—? Viewer —f Viewer ES Viewer
%m Views % Presenters Interactors | CE Controllers
]] ‘l one for views, presenters,
P m— — interactors, controllers, and
Gateways Gateways (Datomic) . . utilities, respectively
Yet we still can deploy them as five
or just two dil/jar files (. , ,
. ; ~— or views and presenters in one file
Part VI - Details __Component Architecture r and everything else in the other I
oy All dependencies cross the
boundary lines in one direction, and
\ Dependency Management they always point tpvyard the '
components containing the higher-
K the Dependency Rule level policy
OrdersController | OrdersController
| i
com.mycompa?\ymyapp.web OrdersController com.mycompqlny.myapp.web
<<uses>> T <<uses>>
1 . |
: <<uses>>I :
—“I. i '|
| I :
v ¥ v
- <<interface>> <<interface>>
;;:igﬁ?; Orderz;ervlce OrdersService
in | -
1
OrdersServicelmpl E OrdersServicelmpl
| 3 OrdersServicelmpl <<uses>>
com.myoompany.myapp.semlce
! | <<interface>>
<<uses>> «uses»' Orders
| "
| : 4
: | \il com.mycompany.myapp.domain
‘i, <<interface>> !
OrdersRepository 1
<<interface>> A
OrdersRepository : !
X ! |
1 ¢ L
i
JdbcOrdersRepository a JdbcOrdersRepository
JdbcOrdersRepository
com.mycompany.myapp.data com.mycompany.myapp.database
com.mycompany.myapp.orders
Package by Layer Ports and Adapters
(. Package by Feature (domain-driven design)
OrdersController
|
com.mycompahy.myapp.web
!
|
<<uses>>
1
I
I
1
1
1
1
I
:|
v
<<interface>>
OrdersComponent
OrdersComponentimpl
;<uses>>
<<interface>>
OrdersRepository
i
JdbcOrdersRepository
A better architecture
com.mycompany.myapp.orders
A grouping of related functionality
Package by Component behind a nice clean interface, which
e resides inside an execution
Definition of a component environment like an application https://c4model.com/
U® The first three approaches allow you
The Devil Is in the Implementation Details to implement details in a wrong way
But they have different encapsula-
tion options (what should be made
All four architectural approaches are the same PUBLIC)
OrdersController OrdersController OrdersController OrdersController
com myoomoﬁ:\y myapp.web im>> com.mycompqrvy myapp.web com. mycompévy myapp.web
<<usep>' E <<‘uses>>_' E
: v : :
34. The Missing Chapter] soniertoces> I causess
T 1
v v !
<<interfaces> é <<interfaces>> E
OrdersService : OrdersService :
_ Organization versus Encapsulation A PN —ﬂ
1 1
iR OrdersServiceimpl Order v
1 . <<interface>>
i] <<uses>> OrdersComponent
com myconvany myapp.service <uses>> V
| i <interfaces: A
. H < > 1
<CUSOE>> H Orders
: v A OrdersComponentimp!
'—*I: OudarsPaouiiors com, mycompany.myapp.domain <auses>
V A 5 X
<anteraces>> : OrdersRe ‘-.m ry
OrdersRepository H .l il
JaN : 4 A
OrdersRepository JdbeOrdersRepositor dbcOrdersRon tor Jdt
com.mycompany.myapp.data com.mycompany.myapp.orders com.mycompany.myapp.database com.mycompany.myapp.orders D‘ The feWer PUBL'C types you haVe,
the smaller the number of potential
\ Grayed-out types are where the access modifier can be made more restrictive dependencies
In Java 9 you can make a distinction
between types that are public and
types that are published
__Other Decoupling Modes f You can decouple your dependen- by splitting code across different
cies at the source code level source code trees
how to map your desired design on
to code structures
. how to organize that code
Think about ﬁ 9
(which decoupling modes to apply
during runtime and compile-time
the size of your team,
take into consideration (their skill level

\ ofs Conclusion: The Missing Advice k . .
Leave options open where applicable but be pragmatic the complexity of the solution

your time
in conjunction with

_ and budgetary constraints

to help you enforce your chosen
think about using your compiler architectural style

Also
and watch out for coupling in other areas, such as data models

https://c4model.com/

