
5. Replication

Intro
Scaling to Higher Load

Shared-Memory Architecture

vertical scaling (or scaling up)

Problem

Twice more powerful machine costs 
more than twice as much

Machine twice the size cannot 
necessarily handle twice the load

Fault tolerance is limited Single geo location

Shared-Disk Architecture
Used for some data warehousing workloads

Problem contention and the overhead of locking limit the scalability

Shared-Nothing Architectures horizontal scaling (or scaling out)

Replication vs Partitioning

Why it is good

Keep data geo close to users Reduce latency

System can work when some parts failed Increase availability

Scale number machines that can 
serve requests Increase read throughput

If data doesn't change
Then very easy Just copy and you are done

All difficulties lies in handling changes

Three algos

1. single-leader

2. multi-leader

3. leaderless

1. Single-Leader Replication

Leaders and Followers

replica Each node that stores a copy of the database

leader-based replication aka active/passive or master–slave replication

leader aka master or primary

followers
aka read replicas, slaves, 
secondaries, or hot standbys

Leader saves data locally and sends it to Followers replication log or change stream

Client
Can read from any replica

Can write only to Leader

This approach is used by many 
databases, message brokers and 
even file systems

Synchronous vs Asynchronous Replication

synchronous
Leader waits until Follower(s) 
confirm they received the message

asynchronous

Leader sends the message but 
doesn't wait responses from the 
Follower(s)

It is impractical to have many sync Followers semi-synchronous configuration

Make just 1 sync Follower

And other Followers are async

If sync Follower becomes slow then 
one of async Followers is made sync

Often completely async

If leader failed and not recovered 
then some writes may be lost

i.e. writes are not guaranteed to be 
durable even if confirmed to the 
client!

Sounds like bad trade-off but it is 
widely used, especially for geo 
distributed replicas

Leader can continue working even if 
all it's Followers have fallen behind

Research on Replication

chain replication Sync replicas in Azure

consensus Several nodes agree on value

Setting Up New Followers

Take snapshot from Leader W/o locks

Copy snapshot to new Follower and load it

Follower connects to Leader and 
asks for data changes since 
snapshot

Position in Leader's log is named 
"log sequence number" or "binlog 
coordinates"

When Follower "caught up" it starts 
processing regular changes from 
Leader

Handling Node Outages

Follower failure: Catch-up recovery

Knows from local log last transaction

Request from leader all data changes

When catch up continue receiving 
stream of data changes

Leader failure: Failover

Steps

1. Determining that the leader has failed
There is no foolproof way to do it

Usually timeout is used

2. Choosing a new leader

Can be done through election process

Or can be appointed by a previously 
elected controller node

Usually best candidate is the one 
that has the most recent data

3. Reconfiguring the system to use 
the new leader

Clients need to send write requests to new Leader

Old Leader should understand that 
he is not a Leader anymore

What can go wrong

Old leader after repair may have 
some unsynced writes in case of 
async replicas. What to do with 
them? Usually they are discharged

Discarging writes can cause 
problems - if outside system relies 
on it E.g. auto incrementing counter used as PK

In some scenarios two replicas may 
thing they are Leader

"Split brain" situation

As a safety catch there can be 
mechanism to shut down one leader But risk that both Leaders will be shot down

What is right timeout before Leader 
is declared dead?

When high load it may reach 
timeout and things will become 
even worse

Implementation of Replication Logs

Statement-based replication

Each statement is resent to followers

But

Non-determenistic functions should 
work differently (now(), rand())

Autoinc can work differently

Side-effects of triggers / procedures

Write-ahead log (WAL) shipping

Followers reads log from LST-Trees 
or WAL used for B-Trees

But
Need the same format of data for 
storage - i.e. the same software

Logical (row-based) log replication
Can have different versions of software

Easier to read such log but other apps

Trigger-based replication

Is more flexible - manually created 
or with some settings

But can have bugs

Problems with Replication Lag

read-scaling architecture Is common for web - lots of reads, few writes

Eventual consistency Has replication lag

3 replication lag anomalies

Reading Your Own Writes

"read-after-write consistency" aka 
"read-your-writes consistency"

Few techniques

When reading something that the 
user may have modified, read it 
from the leader; otherwise, read it 
from a follower.

for one minute after the last update, 
make all reads from the leader

+monitor the replication lag on 
followers and prevent queries from 
slow followers

Writer remembers last timestamp 
and ensures that replica as at least 
that timestamp

logical timestamp

Or actual system clock But them problem with clock sync

If multiple datacenter then extra 
problem - routing requests to the 
datacenter with leader

cross-device read-after-write consistency

Store user's last update timestamp 
across all devices is not easy

May need to route requests for the 
user from all devices to the same 
datacenter to read the leader

Monotonic Reads

Use can see moving backward in time
e.g. new comment can appear and 
then disappear again

Monotonic reads
Is stronger guarantee than eventual consistency

Lesser guaranty than full consistency

Techniques

Make sure that each user reads data 
from the same replica

What are other tecnhiques? what about also using timestamps from reads? But it can lead to read from leader only?

Consistent Prefix Reads

If some partitions are replicated 
slower than others, an observer may 
see the answer before they see the 
question.

If the database always applies 
writes in the same order, reads 
always see a consistent prefix, so 
this anomaly cannot happen

Techniques

any writes that are causally related 
to each other are written to the 
same partition

Solutions for Replication Lag

Transactions are needed to let the 
DB provides stronger guarantees to 
the apps can be simplier

 But they are too expensive for 
partitioned and distributed 
databases

2. Multi-Leader Replication

also known as master–master or 
active/active replication

Use Cases for Multi-Leader Replication

Multi-datacenter operation

One leader per datacenter

It is outdated approach because of problems

Autoincrement

Triggers

Integrity constraints

Clients with offline operation
Local database on local device

CoachDB

Collaborative editing Lock on write. Lock small keystrokes

Handling Write Conflicts

Synchronous versus asynchronous 
conflict detection

Can ask user to wait until sync is 
done but this will lose benefits of 
multi-leaders

Conflict avoidance

All writes for particular records 
should be done via the same leader

But when one datacenter fails and 
you need to reroute you still should 
solve conflicts

Converging toward a consistent state

Last write wins (LWW) Can cause data loss!

Higher numbered replica wins Can cause data loss!

Merge values somehow

Record all conflicts Maybe resolve them later by user

Custom conflict resolution logic

On write Show user conflict on write and ask to solve it

On read Show user conflict on read and ask to solve it

Automatic Conflict Resolution

Conflict-free replicated datatypes (CRDTs) Should read about it!

Mergeable persistent data structures Like GIT

Operational transformation Should read about it!

What is a conflict?

Multi-Leader Replication Topologies

3 approaches

Circular

Star

All-to-all

Problems

Cirtular and Star
Need to prevent infinite looping of the messages

If node fails it can block replication

All-to-all
Some replication directions can be 
faster than others

(a): Insert. (b): select + update. (c): 
Can receive update then insert

Solutions version vectors

3. Leaderless Replication

Aka "Dynamo-style" Client or coordinator sends writes to multiple nodes

Writing to the Database When a 
Node Is Down

Read repair and anti-entropy

Read repair Client reads and repairs data

Anti-entropy process

Process that reads and repairs

Important to ensure durability of 
rarely reading data

Quorums for reading and writing w + r > n

Limitations of Quorum Consistency

There are cases when in w+r>n you 
can see read stale records - when 
nodes w & r has small overlapping

Dynamo-style databases are 
generally optimized for use cases 
that can tolerate eventual consis-
tency. The parameters w and r allow 
you to adjust the probability of stale 
values being read, but it’s wise to 
not take them as absolute guaran-
tees.

Monitoring staleness It is important metric for such type of databases!

Sloppy Quorums and Hinted Handoff

Multi-datacenter operation

Q: what is non-sloppy quorum? How 
we read from where we write?

Detecting Concurrent Writes

Last write wins (discarding 
concurrent writes) If overwriting writes is acceptable - e.g. caching

The “happens-before” relationship 
and concurrency

A before B

B before A

A and B are concurrent Doesn't mean that in the exact same time!

Capturing the happens-before relationship

Merging concurrently written values

Developer should merge siblngs 
(concurrent values)

The same as conflict resolution

Not just remove removed item but 
mark it with tombstone

Version vectors version number per replica as well as per key

Version vectors and vector clocks

Q: Is leaderless slower? When 
leaderless is good?


