aka shard in MongoDb, aka region in
Hbase, aka tablet in BigTable aka
vnode in Cassandra/Riak, aka

. vBucket in Couchbase
Partition
Replication of partitions - is a

common practice
/—(Partitioning and Replication) P

When partitioning is unfair, so that
some partitions have more data or

U@ Skew queries than others
U® Hot spot Partition with disproportionately highload
/
fy Efficient for range query
o (e.g. partitioning by datetime - all
Partitioning by Key Range writes will target the same partition
42 \ U§ Some access patterns can lead to hot spots L
_ Possible solution Prefix with sensor name
ofy Reduce risk of hot spot
/—(Partitioning of Key-Value Data)— (Ranges of hashes
approaches)) . .
_ Consistent Hashing Pseudorandomly assign to partition
_ Partitioning by Hash of Key
First compound column for
partitioning (user_id, update_time-
\ U® can't do efficient range query Possible solution - hybrid approach stamp), others for range scan
\ concatenated index approach (update_timestamp, ...)
E.g. lots of comments on some
Sometimes we still have hot spot popular post
\ Skewed Workloads and Relieving Hot Spots f
K & Possible solution - Add random number But only to really HOT records not for all!

ofy Each partition has secondary
indexes with only data in this
partition

Partitioning Secondary Indexes by Document

e ___local index (U® Select need to query all partitions -
scatter/ gather prone to tail latency amplification

Covers data in all partitions

. . Partitioning by term Good for range scans
Index should be partitioned itself -
/—(Partitioning and Secondary Indexes)— term-partitioned
4 _ Partitioning by hash of term More even distribution of load
__Partitioning Secondary Indexes by Term global index _ofs Client can read from only one right partition

Write to single document may cause
writes to many partitions (to write in

U® Writes are slower and more many indexes)

el . \ complicated /e
6. Partitioning _In practice this is often async

If N changes most of the keys need
U® How not to do it: hash mod N to be mvoved to another partition

-

We have 1000 partitions and 10 nodes

ofs The only thing that changes is the
assignment of partitions to nodes

Fixed number of partitions ofs Can even assign more partitions to

e _ more powerful nodes!
U® Hard to chose right number of
\ partitions if data grows very fast
When a lot of data - divide, when similar to what happens at the top
too few data - merge level of a B-tree

Strategies for Rebalancing

-

_(Rebalancing Partitions)— _ Dynamic partitioning

oy Number of partitions adapts to the
total data volume

U® Starts from single partition - so not - I .
efficient when too few data Solution ofs_pre-splitting Manual initial settings

Range-partitioned

CY))

Supports both

_ Hash-partitioned
number of partitions is proportional
\ to the SIZE OF DATASET

number of partitions is proportional
to the NUMBER OF NODES i.e. fixed number of partitions PER NODE

\ Partitioning proportionally to nodes

16y Convenient

It is expensive operation

Fully automated .
_ Operations: Automatic or Manual Rebalancing /"~ _"® Unpredictable (Wh;en ngde.'ds ovterloaded andd :
system decides to rebalance data
K Can cause cascade failure from it - and it increases load on it!

So - at least partially manual is better

service discovery

Few approaches (

~ [Send all requests to routing tier first partition-aware load balancer

Require client aware of the partitioning
;(Request Routing)—

1. How decision maker should learn
about changes in the assignment of (

Redirects to next node if this node
Send request to random node round-robin load balancer is not owner of required partition

Use protocols to achieve consensys But they are hard to implement

partitions to nodes? e.g. Zookeeper

_ Key issue Y

Use coordination service

_ Everybody subscribes to it's changes

\ Parallel Query Execution

