
vs

6. Partitioning

Partition

aka shard in MongoDb, aka region in 
Hbase, aka tablet in BigTable aka 
vnode in Cassandra/Riak, aka 
vBucket in Couchbase

Partitioning and Replication

Replication of partitions - is a 
common practice

Partitioning of Key-Value Data

Skew

When partitioning is unfair, so that 
some partitions have more data or 
queries than others

Hot spot Partition with disproportionately highload

Partitioning by Key Range

Efficient for range query

Some access patterns can lead to hot spots

e.g. partitioning by datetime - all 
writes will target the same partition

Possible solution Prefix with sensor name

Partitioning by Hash of Key

Reduce risk of hot spot

approaches
Ranges of hashes

Consistent Hashing Pseudorandomly assign to partition

Can't do efficient range query Possible solution - hybrid approach
concatenated index approach

First compound column for 
partitioning (user_id, update_time-
stamp), others for range scan 
(update_timestamp, ...)

Skewed Workloads and Relieving Hot Spots
Sometimes we still have hot spot

E.g. lots of comments on some 
popular post

Possible solution Add random number But only to really HOT records not for all!

Partitioning and Secondary Indexes

Partitioning Secondary Indexes by Document
local index

Each partition has secondary 
indexes with only data in this 
partition

Select need to query all partitions - 
scatter/ gather prone to tail latency amplification

Partitioning Secondary Indexes by Term global index

Covers data in all partitions

Index should be partitioned itself - 
term-partitioned

Partitioning by term Good for range scans

Partitioning by hash of term More even distribution of load

Client can read from only one right partition

Writes are slower and more 
complicated

Write to single document may cause 
writes to many partitions (to write in 
many indexes)

In practice this is often async

Rebalancing Partitions

Strategies for Rebalancing

How not to do it: hash mod N
If N changes most of the keys need 
to be mvoved to another partition

Fixed number of partitions

We have 1000 partitions and 10 nodes

The only thing that changes is the 
assignment of partitions to nodes

Can even assign more partitions to 
more powerful nodes!

Hard to chose right number of 
partitions if data grows very fast

Dynamic partitioning

When a lot of data - divide, when 
too few data - merge

similar to what happens at the top 
level of a B-tree

Number of partitions adapts to the 
total data volume

Starts from single partition - so not 
efficient when too few data Solution pre-splitting Manual initial settings

Supports both
Range-partitioned

Hash-partitioned

number of partitions is proportional 
to the SIZE OF DATASET

Partitioning proportionally to nodes
number of partitions is proportional 
to the NUMBER OF NODES i.e. fixed number of partitions PER NODE

Operations: Automatic or Manual Rebalancing
Fully automated

Convenient

Unpredictable

It is expensive operation

Can cause cascade failure

When node is overloaded and 
system decides to rebalance data 
from it - and it increases load on it!

So - at least partially manual is better

Request Routing

service discovery

Few approaches

Send request to random node round-robin load balancer
Redirects to next node if this node 
is not owner of required partition

Send all requests to routing tier first partition-aware load balancer

Require client aware of the partitioning

Key issue

How decision maker should learn 
about changes in the assignment of 
partitions to nodes?

Use protocols to achieve consensys But they are hard to implement 

Use coordination service
e.g. Zookeeper

Everybody subscribes to it's changes

Parallel Query Execution


