
7. Transactions

Intro
Purpose of transactions To simplify the programming model

The Slippery Concept of a Transaction

The Meaning of ACID

ACID
ambigous

a marketing term now

BASE
Basically Available, Soft state, and
Eventual consistency

Atomicity
If transaction aborted we can safely retry it All-or-nothing guarantee

"abortability" would be better term

Consistency

application-specific notion of the
database being in a “good state”

doesn't really belong to db properties

Isolation

concurrently executing transactions
are isolated from each other

serializable isolation
is rarely used because of
performance problems

Durability

promise that stored data will never be lost

In single-node db Write-ahead log

In replicated db Successfully copied to some nodes

Single-Object and Multi-Object Operations

When denormanization is made
(e.g .counters) then we need to
update few objects

Atomicity and Isolation are
important then

Single-object writes

Some database also support
increment

compare-and-set

But this is not a full transaction
(which requires multiple objects)

The need for multi-object transactions

Relation db - references between
multiple objects inserted

Document db - updating multiple
denormalized objects

Secondary indexes are separate
objects that should be updated

Handling errors and aborts

Leaderless replication db follow
"best-effort" approach App developers should deal with errors

Even transaction is not perfect

Network can lose ack on successful commit

If fail due to high load then retry will increase load

Retry will not help in case of some
errors - e.g. constraint violation

Some failed transactions could
cause side effects - e.g. send email

If client process fails during retry
the data is lost

Weak Isolation Levels

Read Committed

No dirty reads Not reading uncommitted other writes

No dirty writes
Not overwriting uncommitted
other's writes

Snapshot Isolation and Repeatable Read

We see external state at start of
OUR transaction Good for long running operations

Key principle
readers never block writers, and
writers never block readers

multi-version concurrency control (MVCC)

created_by

deleted_by

Update = delete + insert

Visibility rules for observing a
consistent snapshot

Ignore created/deleted by transac-
tions that were not committed when
we started and that were created
after us

Indexes and snapshot isolation Approches
Index points to two versions

New b-tree root is created

Repeatable read and naming confusion

Preventing Lost Updates

Atomic write operations

Approaches

Exclusive lock on object for read/write cursor stability

Force all atomic operations to be
executed on a single thread

Problems
ORMs often performs unsafe read-
modify-write instead of atomic

Explicit locking

FOR UPDATE clause indicates that
the database should take a lock on
all rows returned by this query

It’s easy to forget to add a
necessary lock somewhere in the
code, and thus introduce a race

Automatically detecting lost updates

Compare-and-set
UPDATE ... where id=x and
content=previous_content But not good if snapshot isolation

Conflict resolution and replication

Write Skew and Phantoms

kinds of race conditions

dirty writes

lost updates

write skew

Two transactions read the same
objects but then update different(!)
objects causing problem

If update the same object then dirty
writes or lost updates

Characterizing write skew Solution to skew
serializable isolation

FOR UPDATE lock in advance

More examples of write skew

Claiming a username

Preventing double-spending

More solutions unique constraint

Phantoms causing write skew
SELECT FOR UPDATE can only work
when you have object to lock

If you make decision based on NOT
existing objects (Phantoms) you
can't lock on them

One transaction is changing the
result of another transaction's
search query

Materializing conflicts

Create table with rows for each
rooms x timeslots Just to lock on them! Even w/o data

But it's ugly Serialisable isolation is better

Serializability

1. Actual Serial Execution

Use single thread Is ok because
keep data in RAM is cheap

OLTP has small transactions While for OLAP use snapshot isolation

Encapsulating transactions in stored procedures
No interactive transactions!

Transaction only in stored procedure

Pros and cons of stored procedures

Partitioning
to scale to multiple CPU cores, and
multiple nodes

If each transaction only needs to
read and write data within a single
partition

If transaction needs data from
different partitions it is very slow

Summary of serial execution

2. Two-Phase Locking (2PL)

Like RWMutex in golang
Readers block writers

Writers block other readers and writers

Implementation of two-phase locking

Two phase
Acquire lock

Release lock

Deadlock might happen They will detected and aborted Can be retried by the app

Performance of two-phase locking Pefrormance may be poor

Predicate locks

Prevents phantoms

applies even to objects that do not
yet exist in the database, but which
might be added in the future
(phantoms)

Index-range locks
simplified approximation of
predicate locking Because predicate lock has poor performance

3. Serializable Snapshot Isolation (SSI)

Has better performance and can scale well it was invented in 2008

Pessimistic versus optimistic
concurrency control

2PL - is pessimistic

Serial Execution - is pessimistic to the extreme

SSI - is optimistic!

Decisions based on an outdated premise 2 cases to consider
Detecting stale MVCC reads

When the transaction wants to
commit, the database checks
whether any of the ignored writes
have now been committed. If so, the
transaction must be aborted

Detecting writes that affect prior reads

Performance of serializable
snapshot isolation

