
8. The Trouble with Distributed Systems

Faults and Partial Failures

partial failure nondeterministic

Cloud Computing and Supercomputing

high-performance computing (HPC)

cloud computing

thousands of nodes => something is always broken

we need to build a reliable system 
from unreliable components

Unreliable Networks

you can't understand why you didn't get response The usual way of handling this issue is a timeout

Network Faults in Practice

Network partitions or netsplit network fault

Not necessarily need to tolerate it Just showing error to user can be a good strategy

Detecting Faults

Timeouts and Unbounded Delays

Hard question: how long to wait?

unbounded delays No upper limits for delays

Network congestion and queueing

A lot of queues everywhere

TCP Versus UDP

UDP does not perform flow control 
and does not retransmit lost 
packets

UDP is good when delayed data is worthless

Good practice to define timeouts 
dynamically considering round trips 
and some variabilities (jitter)

And TCP is doing this already. And 
Cassandra and Akka

Synchronous vs Asynchronous Networks

Sync networks such as ISDN reserve 
16 bits for every established call in 
every packet which is sent every 
250microseconds circuit-switched network

no queues

bounded delay

Can we not simply make network 
delays predictable?

Ethernet and IP packet-switched protocols

Queues

Unbounded delays

Better for bursty traffic

There were attempts to use hybrid approach
Asynchronous Transfer Mode (ATM)

InfiniBand

Emulating hybrid over TCP

quality of service (QoS, prioritiza-
tion and scheduling of packets)

admission control (rate-limiting senders)

Latency and Resource Utilization

Latency can be guaranteed in case 
of static partitioning of resources. 
Which reduces utilisation

Unreliable Clocks

Monotonic Versus Time-of-Day Clocks

Time-of-day clocks

Aka "wall-clock time"

Returns number of seconds from 
epoch (1-Jan-1970) not counting 
leap seconds

May be jumped back during sync 
with NTP server

Unsuitable for measuring elapsed time!

Monotonic clocks

Difference is good

Absolute value is meaningless!

Can be time from start of computer

No sense to compare times from 
two computers

NTP can ask clock rate to speedup 
or slow down by up to 0.05% But cannot jump it forward or backward

Clock Synchronization and Accuracy
Can depend on temperature

Drifts can be = 17 seconds / day

Relying on Synchronized Clocks Timestamps for ordering events

Last write wins (LWW) strategy may 
rely on timestamps and cause 
problem - not applying later 
changes in multi-leader environ-
ment

Q: What to use for Logs then?

Clock readings have a confidence interval

Synchronized clocks for global snapshots

Process Pauses

Response time guarantees

hard real-time systems For controlling aircrafts, cars, etc

Is real-time really real?

real-time operating system (RTOS)

Limiting the impact of garbage collection

Emerging idea - runtime to tell that 
we need to GC soon and stop 
directing requests to this node - so 
it can GC w/o impacting users

Regular restart of nodes can also 
limit needs in GC for long-lived 
objects

Knowledge, Truth, and Lies

The Truth Is Defined by the Majority
The leader and the lock

The leader or lock may no longer be 
valid / can be expired

Fencing tokens

Byzantine Faults

When you cannot trust nodes - i.e. node can lie

The Byzantine Generals Problem

Byzantine fault-tolerant

If system can operate in such 
environment

Examples

Aerospace environment Systems can be damaged by radiation

Multiple organisations environment e.g. Bitcoin

Weak forms of lying

Checksums

Validate user inputs

Multiple NTP servers

System Model and Reality

Timing assumption models

Synchronous model Bounded delays, pauses, clock errors

Partially synchronous model
Most of the time bounded, but not always

Most useful model

Asynchronous model No clocks and any timing assumptions

Node failures models

Crash-stop faults Node can crash and it will gone forever

Crash-recovery faults
Node after crash may recover after some time

Most useful model

Byzantine (arbitrary) faults

Correctness of an algorithm Properties

Uniqueness
Each request for fencing token 
returns new one

Monotonic sequence Increasing of fence tokens

Availability
Node will eventually get response 
with fencing token

Safety and Liveness

Safety nothing bad happens

Liveness
Often includes word "eventually"

something good eventually happens

Mapping system models to the real world


