
9. Consistency and Consensus

Consistency Guarantees

Most replicated DBs provide at least 
eventual consistency

Aka "convergence"

But reading your own writes is not guaranteed

Eventual consistency is inconve-
nient for developers and often need 
more guarantees

But they come at some price of 
performance or less fault-tolerance

Consistency overlaps but is 
different from isolation levels 
(transactions)

Linearizability

Each business operation should 
clearly define what type of isolation 
and consistency is needed!

Linearizability - illusion of single replica

Aka "atomic consistency" aka 
"strong consistency" aka "immedi-
ate consistency" aka "external 
consistency"

It is a "recency guarantee"

What Makes a System Linearizable? Linearizability vs Serializability

Relying on Linearizability

Locking and leader election

Constraints and uniqueness guarantees

Cross-channel timing dependencies

Implementing Linearizable Systems

Replication types

Single-leader replication

Read from leader or sync-follower Potentially linearisable

Read from async Can violate durability and linearisability

Consensus algorithms linearizable Thanks to consensus algorithms

Multi-leader replication not linearizable

Leaderless replication probably not linearizable

Linearizability and quorums

Can fix problem with cost of 
performance

Read repair

Writer should read latest state of quorum

But last-write-wins still breaks 
linearizability

The Cost of Linearizability

network interruption causes app to 
become unavailable

The CAP theorem
The Unhelpful CAP Theorem

Consistency, Availability, Partition 
tolerance: pick 2 out of 3

Network partitions will happen 
anyway! So you don't have choice

either Consistent or Available when Partitioned

Linearizability and network delays Even RAM in multicore CPU is not linearizable! To increase performance

Ordering Guarantees

Ordering and Causality

Ordering is importance because it 
helps preserve causality

Ordering = causally consistent

The causal order is not a total order

Linearizability =total order

Causality =partial order
Two events can be incomparable if 
they happen concurrently

Linearizability is stronger than 
Causal Consistency

causal consistency is the strongest 
possible consistency model that

does not slow down due to network delays

and remains available in the face of 
network failures

Capturing causal dependencies

Version vectors can be generalized 
to track dependencies across the 
entire database

Sequence Number Ordering

Sequence number can provide total order! Can be timestamp or counter

Noncausal sequence number generators
But how generate them in 
distributed systems?

All approaches are not fully 
consistent with causality

Lamport timestamps

consistent with causality

Node id + Counter

Increases counter for each request

If client sees larger counter it 
updates it's counter

Timestamp ordering is not sufficient
Can create the same user name twice

Need to know when order is finalized

Total Order Broadcast

Aka "atomic broadcast"

Scope of ordering guarantee

Two properties are required

Reliable delivery No messages are lost

Totally ordered delivery
Messages delivered in the same 
order to each node

Using Total Order Broadcast

It is exactly what is needed for db replications state machine replication

Can be used for serialisable 
transactions

Can be used for logs

Can be used for lock services

Implementing Linearizable storage 
using Total Order Broadcast

Total Order Broadcast does not 
answers WHEN message is 
delivered to different nodes One recipient may lag behind another

But Linearizability also guarantees recency Read is guaranteed to see the latest write

Can implement linearizability using 
total order broadcast

Write

Read my write - ensure it is the first

Implementing total order broadcast 
using linearizable storage

Distributed Transactions and Consensus

intro

Consensus get several nodes to agree on something

Situations
Leader election

Atomic commit

The Impossibility of Consensus FLP result

No also to reach consensus if nodes may crash

But if we use clocks and timeouts to 
detect crashes then it is solvable

Atomic Commit and Two-Phase 
Commit (2PC)

Atomicity is especially important for
Multi-object change

Secondary indexes

From single-node to distributed 
atomic commit

Introduction to two-phase commit (2PC)

XA transactions supported by the Java Transaction API

WS-AtomicTransaction for SOAP web services

Don’t confuse 2PC and 2PL

Uses coordinator or transaction manager

A system of promises 2 points

"yes" answer of the node It promises to commit if it is asked

Decision made by coordinator
Which he will later try (with forever 
retries) to deliver to each node

Coordinator failure
After node answered "yes" it should 
wait for coordinator's decision

Transaction is "in doubt" or 
"uncertain"

Three-phase commit (3PC)

2PC is blocking Can stuck, waiting coordinator to recover

3PC is non-blocking

But requires network with bounded 
delays and nodes with bounded 
response times

i.e. it requires perfect failure detector

Which is inpractical So we keep using 2PC

Distributed Transactions in Practice

Bad performance

Two types

Database-internal distributed 
transactions

Heterogeneous distributed transactions

Exactly-once message processing

XA transactions
X/Open XA (short for eXtended 
Architecture)

Standard implementation of 2PC for 
heterogeneous technologies

Holding locks while in doubt

Other requests may be locked if 
they try to read row which is in 
doubt

Recovering from coordinator failure

"orphaned" in-doubt transactions do occur

The only way - administrator 
manually decide: commit or abort

But it is manual and stressful work 
when everything is bad

Many XA implementations have 
automated Emergency escape heuristic decisions probably breaking atomicity

Limitations of distributed transactions If any part fails the transactions also fail
So - distributed transactions are 
amplifying failures

Fault-Tolerant Consensus

Properties

Uniform agreement No two nodes decide differently

Integrity No node decides twice

Validity
If a node decides value v, then v 
was proposed by some node

Termination
Every node that does not crash 
eventually decides some value

e.g. 2PC does not meet this 
requirement!

Consensus algorithms and total 
order broadcast

Best algos

Viewstamped Replication (VSR)

Paxos

Raft

Zab

Most of algos decide on sequence
Which makes them Total Order 
Broadcast algos

Nodes propose a message they 
want to be sent next

Nodes decide on the next message 
to be delivered

Single-leader replication and consensus

In order to solve consensus (reelect 
the leader) we need to have a 
leader?

Epoch numbering and quorums

Each leader is assigned epoch
If two leaders exist then the one 
with the highest epoch wins

Two rounds of voting

One to choose the leader

Second to vote for leader's proposal

Voting nodes must overlap with at 
least one node!

Limitations of consensus
Performance is not good

Good algo is still an open question

Membership and Coordination Services

projects
ZooKeeper

etcd

Features of ZooKeeper

Linearizable atomic operations

Total ordering of operations

Failure detection

Change notifications

Allocating work to nodes

Useful for selecting new leader

But also also useful for
job schedulers and similar stateful systems

partitioned resource when need to rebalance

Apache Curator A higher level tool on top of ZooKeeper

Zookeeper is for slow changing data If need fast changing Apache BookKeeper

Service discovery

ZooKeeper, etcd, and Consul

Can also help other services 
discover who the leader is Via read-only caching replicas

Membership services
Can use consensus to select who is 
currently alive (members)

And for example can select leader 
by lowest ID among members

Summary

You need strong consistency 
(Linearizability) But it is expensive

You can usually use cheaper and 
weaker consistency - Causal 
Consistency

But sometimes it is not enough

e.g. you can end up creating the 
same login concurrently by different 
users

You can solve such problems by Consensus but it requires Linearizability
Which is expensive

cycle? 

😀

Good news are

We do not need Consensus for 
EVERY operation

We can use single leader with 
Linearizability And Consensus for selecting new leader

Or we can use Causal Consistency And Consensus for some problem cases

We have specific software that 
implements Consensus e.g. ZooKeeper

Also some systems (leaderless / 
multileader) don't need linearizability Can work with branching and merging


