
10. Batch Processing

Batch Processing with Unix Tools

Simple Log Analysis

Unix commands: awk, sed, grep, 
sort, uniq, and xargs

Chain of commands versus custom program

Sorting versus in-memory aggregation

For large datasets - unix commands 
can be better - as sort will never 
exceed memory limits - it can sort 
on disk if needed

The Unix Philosophy

Pipes

A uniform interface One tool can be in pipe with another tool

Separation of logic and wiring
good design!

But hard with multiple inputs or outputs

Transparency and experimentation
Immutable input

But can run only on single machine

MapReduce and Distributed Filesystems

HDFS (Hadoop Distributed File System)

an open source reimplementation of 
the Google File System (GFS)

shared-nothing principle

MapReduce Job Execution

Mapper For each input record extracts key and value

Reducer

Collects all values belonging to the 
same key and calls reducer with 
operator over collection of values

Distributed execution of MapReduce

Scheduler tries to put computation near data

Number of mappers = number of input files

Number of reducers is configured by author

And each mapper produces sorted 
files for each reducer using hash 
functions

MapReduce workflows

MapReduce has limited functionality 
=> need workflow of few MapRe-
duces

Such workflow is implemented using 
workflow schedulers, such as Oozie, Azkaban, Luigi, Airflow, and Pinball

There are higher-level tools for 
Hadoop, such as Pig, Hive, Cascading, Crunch, and FlumeJava

Reduce-Side Joins and Grouping

Example: analysis of user activity events

Sort-merge joins
User's day of birth will go to 
reduced before all user's click data

Bringing related data together in the same place

GROUP BY

Handling skew

Most of people has some followers 
but celebs has millions of followers linchpin objects or hot keys

All celeb's data to single reducer is not efficient skew Aka hot spots

Such data is distributed across 
multiple reducers

The cost is we should also distribute 
the join records for that keys

Map-Side Joins

Broadcast hash joins

aka replicated join or MapJoin

Often requested join data is in 
cache => fast enough

Partitioned hash joins

aka bucketed map joins

Data that should be joined is 
partitioned and distributed to 
Mappers

Map-side merge joins

If data is pre-sorted then mapper 
can join efficiently without sorting 
or accessing by hash index

MapReduce workflows with map-side joins

The Output of Batch Workflows

Building search indexes

Key-value stores as batch process output Example - some ML calculations

Philosophy of batch process outputs Similar to Unix commands!

But data is more structured - no 
need to parse

And no need to run sort between 
map and reduce like in Unix

Comparing Hadoop to Distributed Databases

Diversity of storage

Bringing data together faster is 
better that planning structure ahead 
- so - data on HDFS can be 
unstructured in the beginning of 
experiments sushi principle raw data is better

So Hadoop is used for ETL

Diversity of processing models

Designing for frequent faults

MPP reruns the whole query

MapReduce reruns the task on failed node Better for LARGE jobs

Overcommitting resources at 
Google datacenter

More efficient resource utilisation

But some low priority tasks will be killed So - need to tolerate kills / restarts

Beyond MapReduce

Problems with MapReduce

It is not simple

You need to implement all the joins

However higher-level programming 
models (Pig, Hive, Cascading, 
Crunch) make things easier

It is not fast for some kind of processing Other tools can be used here

Materialization of Intermediate State

Problems with MapReduce

Job can start when all tasks in 
previous job finished 

Mappers are redundant - previous 
Reducer is enough

Replicating intermediate files is overlill

Dataflow engines

Spark, Tez, Flink 

Handle entire workflow as job More optimisations => faster than MapReduce!

Typically arrange the operators in a 
job as a directed acyclic graph 
(DAG)

flow of data from one operator to 
another is structured as a graph

the data itself typically consists of 
relational-style tuples

Fault tolerance Computations should be deterministic!

Discussion of materialization

Graphs and Iterative Processing

the data itself has the form of a graph Different from Dataflow engines

Repeat until done (iterative style algo)
Cannot be implemented in MapReduce

Graphs Processing is good for this

The Pregel processing model

bulk synchronous parallel (BSP)

Unlike in MapReduce, a vertex 
remembers the state

Implemented by

Apache Giraph

Spark’s GraphX API

Flink’s Gelly API

Fault tolerance

Parallel execution

High-Level APIs and Languages

The move toward declarative query languages
To reduce function calls and data 
fields where possible e.g. select only needed columns

Specialization for different domains

Mahout
For ML on top of MapReduce, 
Spark, and Flink

MADlib
Similar functionality inside relational 
MPP database (Apache HAWQ)

Summary

How batch-process data evolved

Unix commands

MapReduce

Data Flow engines

Two main problems

Partitioning To bring all related data in the same place

Fault Tolerance To recoved from individual failed tasks

Join algos

Sort-merge joins

Broadcast hash joins

Partitioned hash joins

Batch processing works well when 
the input data is bounded (fixed 
size)!

For unbounded data use Stream 
Processing (see chapter 11)


