
12. The Future of Data Systems

Data Integration

Combining Specialized Tools by 
Deriving Data

Reasoning about dataflows
Total order

Idempotent

Derived Data vs Distributed 
Transactions

Transactions usually provide 
Linearizability Guarantees such as Reading Your Own Writes

The limits of Total Ordering

When single machine can't handle total ordering

When we need geo distribution

When independent micro services 
can originate messages

When clients display changes 
immediately (local db)

Total Ordering is equivalent to consensus
It is still an open research problem 
how to design scalable consensus

Ordering events to capture Causality

Starting points for Causality

Logical timestamps

Reads are events too

Conflict resolution algos

Maybe in future we will discover 
how to make Causality w/o Total 
Order Broadcast

Batch and Stream Processing

Maintaining derived state Async is more robust than sync

Reprocessing data for application evolution

It allows to completely redesign 
data model and reprocess all the 
data

Schema Migrations on Railways

Derived views allow gradual evolution
Two views (old and new) are 
working in parallel

The lambda architecture
Batch and Stream at the same time!

But it adds complexity

Unifying batch and stream processing

Unbundling Databases

Composing Data Storage Technologies

Creating an index similar to

setting up a new follower replica

bootstrapping Change Data Capture 
in a streaming system

The meta-database of everything
Federated databases: unifying reads

Unbundled databases: unifying writes

Making unbundling work

distributed transactions

ordered log of events with 
idempotent consumers loose coupling

At system level

At human level

Unbundled vs integrated systems

What’s missing? Unix-like pipelines of different db systems differential dataflow

Designing Applications Around Dataflow

“database inside-out”
Like cells with formulas in 
spreadsheets!

Application code as a derivation function app-specific functions

Separation of application code and state
Stateless services + request/reply 
to database with state

Subscribe to changes is just 
beginning to emerge

Dataflow: Interplay between state 
changes and application code

Order of messages is important in 
state changes

Stream processors and services

Observing Derived State

Write and Read paths

Materialized views and caching

Stateful, offline-capable clients

Pushing state changes to clients

End-to-end event streams

Reads are events too

Multi-partition data processing

Aiming for Correctness

The End-to-End Argument for Databases

Exactly-once execution of an operation

may need to maintain some 
additional metadata and ensure 
fencing when failing over

Duplicate suppression

Operation identifiers
Pass it to db for insert to ensure no 
duplicate operations

The end-to-end argument

Applying end-to-end thinking in 
data systems

Enforcing Constraints

Uniqueness constraints require consensus

Uniqueness in log-based messaging

Multi-partition request processing

Without total order for three 
elements which can be on different 
partitions - transaction id, payer id 
and payee id!

0. Partition to keep payer balance To check enough money first

1. Partition to keep transactions

2. Partition for payee account balance

3. Partition for payer account balance Maybe don't need it because of 0?

Timeliness and Integrity

violations of Timeliness are 
“eventual consistency"

violations of Integrity are “perpetual 
inconsistency”

Correctness of dataflow systems

Write as single message

Deterministic functions

Request id

Immutable messages Allows reprocessing them from time to time

Loosely interpreted constraints
apology workflow in business

In many business contexts, it is 
actually acceptable to temporarily 
violate a constraint and fix it up later 
by apologizing.

Examples: double/overbooking, lack 
of items->delays, etc

Negative balance -> overdraft fee, 
bound risk by limiting number of 
withdrawals per day

Coordination-avoiding data systems

Trust, but Verify

even random bit-flips in memory are possible 

😱

Maintaining integrity in the face of 
software bugs Bugs in system software

Don’t just blindly trust what they promise Need audits logs and checks

A culture of verification

Designing for auditability

The end-to-end argument again

Tools for auditable data systems Blockchains have some interesting ideas

Doing the Right Thing

https://www.acm.org/

Predictive Analytics

algorithmic prison Discriminating people by AI/algos

Bias and Discrimination
Postal code or IP can predict race in 
some neighbourhoods

Responsibility and Accountability

Who is similar to you, and how did 
people like you behave in the past? It is discriminatory!

we will need to figure out how to 
make algorithms

accountable and transparent

avoid reinforcing existing biases

fix them when they inevitably make mistakes

Can help those people who most need it.

But can identify vulnerable people

sell them risky products such as 
high-cost loans and worthless 
college degrees

Feedback loops

Privacy and Tracking

Surveillance try replacing the word "data" with "surveillance"

Consent and freedom of choice

Privacy and use of data

Data as assets and power

Remembering the Industrial Revolution

Great comparison!

Data is the pollution problem of the 
information age, and protecting 
privacy is the environmental 
challenge. Almost all computers 
produce information. It stays 
around, festering. How we deal with 
it—how we contain it and how we 
dispose of it—is central to the 
health of our information economy. 
Just as we look back today at the 
early decades of the industrial age 
and wonder how our ancestors 
could have ignored pollution in their 
rush to build an industrial world, our 
grandchildren will look back at us 
during these early decades of the 
information age and judge us on 
how we addressed the challenge of 
data collection and misuse.

We should try to make them proud.

Legislation and self-regulation

Summary

Data Integration. How to

Dataflows=Transformations (index, 
materialized view, ML model, stat 
summaries, etc)

a great model for the system to 
make it easier to grow

Unbundled databases
another useful model

Using derived states

How to implement integrity in 
scalable way (i.e. w/o distributed 
transactions)

Sometimes it is good to apologize 
about constant violation!

Ethical aspects of building data 
intensive apps Algorithms and Privacy

https://www.acm.org/

