
Adam Bellemare - Building Event-
Driven Microservices

2. Event-Driven Microservice Fundamentals

Building Topologies

Microservice Topology

the event-driven topology internal 
to a single microser vice

Business Topology

the set of microservices, event 
streams, and APIs that fulfill 
complex business functions

composed of Business Communica-
tion Structures (detailed in Chapter 
1)

The Contents of an Event

An event can be ANYTHING that has 
happened within the scope of the 
Business Communication Structure

receiving an invoice

booking a meeting room

requesting a cup of coffee

hiring a new employee

successfully completing arbitrary code

An event is a RECORDING of what happened the single source of truth

The Structure of an Event

Unkeyed Event used to describe an event as a 
singular statement of fact

Entity Event
particularly important in event-
driven architectures

They provide a continual history of 
the state of an entity and can be 
used to materialize state

Only the latest entity event is 
needed to determine the current 
state of an entity

Keyed Event

contains a key but does not 
represent an entity

usually used for partitioning the 
stream of events to guarantee data 
locality within a single partition of 
an event stream

An example could be a stream of 
events, keyed on ISBN, indicating 
which user has interacted with the 
book Can be aggregated into single Entity Event

Materializing State from Entity Events

"table-stream duality"

1. Materializing an event stream into a table

2. Generating an event stream from 
the changes applied to a table

used for communicating state 
between event-driven microservices

The deletion of a keyed event is 
handled by producing a tombstone a keyed event with its value set to null

Compaction reduces both disk usage and the 
number of events

Event Data Definitions and Schemas

The consumer needs a shema to 
interpret the events w/o consulting 
with the producer

Good schematizations examples

Apache Avro

Google Protobuf

1. Evolution is supported - w/o 
requiring downstream consumers to 
change the code

2. Typed classes

Microservice Single Writer Principle

Each event stream has one and only 
one producing microservice (owner 
of each event)

Powering Microservices with the Event Broker

Multiple, distributed event brokers 
work together in a cluster are 
suitable for large-scale enterprises 
and provide great features

Scalability

Durability

High availability

High-performance

Event Storage and Serving min 
requirements

Partitioning

Strict ordering

Immutability

Indexing to specify which offset to begin reading from

Infinite retention

Replayability

Additional Factors to Consider

Support tooling

Hosted services

Client libraries and processing frameworks

Community support

Long-term and tiered storage

Event Brokers vs Message Brokers

Event brokers can be used in place 
of a message broker

but a message broker cannot fulfill 
all the functions of an event broker

only one consumer will read event 
from the queue

event is deleted from the queue and 
cannot be replayed

Consuming from the Immutable Log

usually event broker is an append-
only immutable log

Consuming as an event stream
Consumer group

allows for multiple consumers to be 
viewed as the same logical entity

Consuming as a queue

each event is consumed by one and 
only one microservice instance

Event order is NOT maintained when 
processing from a queue

Parallel consumers consume and 
process events out of order

Single consumer may fail to process 
an event, return it to process later, 
and move on to the next event

Apache Pulsar currently supports queues

Kafka does not support queues

Providing a Single Source of Truth
durable and immutable log ensures 
the "Single Source of Truth" This requires a culture shift in the organization

Must also publish the monolith’s 
data to the event broker!

Consumers now should not deal 
with the monolith but consume data 
from the event stream!

Managing Microservices at Scale

Putting Microservices into Containers

A vulnerability in the kernel can put 
all the containers on that host at 
risk

shared tenancy models in cloud 
computing make it a significant 
consideration

Putting Microservices into Virtual Machines

higher overhead costs compared to containers

Keep an eye on new technologies - 
they should make the usage of VMs 
more competitive

Google’s gVisor, Amazon’s Firecrac-
ker, and Kata Containers

Managing Containers and Virtual Machines Container management systems (CMSes)
Kubernetes, Docker Engine, Mesos 
Marathon, Amazon ECS, and Nomad

Paying the Microservice Tax

Microservice Tax

the sum of costs, including 
financial, manpower, and opportu-
nity, associated with implementing 
the tools and components of a 
microservice architecture

Small organizations would likely do 
best to stick to a modular monolith

Larger organizations need to 
account for the total costs of both 
the implementation and maintenan-
ce of a microservice platform, 
considering the long-term roadmap

The microservice tax is being 
steadily reduced with new tools 
(CMSes, event brokers, etc)


