
Adam Bellemare - Building Event-
Driven Microservices

3. Communication and Data Contracts

Event-Driven Data Contracts

data contract

is followed by both the producer 
and the consumer

2 components of well-defined conract
data definition (what)

triggering logic (why) can be in comment or in other form

when changing the data definition 
don't delete or alter fields that are 
being used by downstream 
consumers

Using Explicit Schemas as Contracts

a schema for each event

Building common library that 
interprets any given event for all 
services - is not a good idea

problems with multiple language 
formats, event evolutions, and 
independent release cycles

Q: why can't we solve this using git 
- each service/release has it's 
current format that can be evolved 
(with full compatibility)

Explicit schemas give security and 
stability to both consumers and 
producers

Schema Definition Comments comments are very useful

Specifying the triggering logic of the event

Giving context and clarity about a 
particular field

Full-Featured Schema Evolution

Forward compatibility

Backward compatibility

Full compatibility

Code Generator Support

code generator
turns an event schema into a class 
definition or equivalent structure

Producer event production workflow 
using a code generator

Consumer event consumption and 
conversion workflow using a code 
generator

note that the consumer converts 
events from schema v2, as created 
by the producer, to v1, the schema 
format used by the consumer

Breaking Schema Changes

The most important thing when 
dealing with breaking schema 
changes is to communicate early 
and clearly with downstream 
consumers

Accommodating breaking schema 
changes for ENTITIES two choices

Contend with both the old and new schemas

it simply pushes off the resolution 
of the different entity definitions 
onto the consumer

but the consumer will never be in a 
better position than the producer 
for resolving divergent schema 
definitions

Re-create all entities in the new 
schema format

Leave the old entities under the old 
schema in their original event 
stream

Produce the new and updated 
entities using the new schema to a 
new stream

Accommodating breaking schema 
changes for EVENTS

create a new event stream and 
begin producing the new events to 
that stream

Selecting an Event Format

best formats

Avro

Thrift

Protobuf

best event brokers support 
serialization/deserialization with 
these formats

e.g. Kafka and Pulsar support JSON, 
Protobuf, and Avro

JSON or other key-value formats 
are not recommended

because they require far more 
interteam communication

Designing Events

Tell the Truth, the Whole Truth, and 
Nothing but the Truth

Good event definition is the 
complete description of EVERYT-
HING that happened during that 
event

So - consumers should not need to 
consult any other source of data

Use a Singular Event Definition per Stream one stream = one event type

Use the Narrowest Data Types Common mistakes

Using string to store a numeric value
BUT What about Decimal/Money 
type? It is rately supported

Using integer as a boolean

Using string as an enum
Enums are not supported in JSON. 
This is one more benefit of Protobuf

Keep Events Single-Purpose

do not create type field and fields based on it

it is better to create separate events

Minimize the Size of Events
Make sure that the data is directly 
related and relevant to the event

Additional data may not be of any 
real use to the downstream 
consumers

Involve Prospective Consumers in 
the Event Design

Consumers will understand their 
own needs and anticipated business 
functions better than the producers 
and may help in clarifying require-
ments

Avoid Events as Semaphores or Signals
Bad example

Event indicating that work has been 
completed for an arbitrary job 
(actual result of the work is not 
included in the event)

Now there are two sources of truth 
for a piece of data => consistency 
problems arise


