
Adam Bellemare - Building Event-
Driven Microservices

4. Integrating Event-Driven Architectures with Existing Systems

Data Liberation

is the identification and publication 
of cross-domain data sets to their 
corresponding event streams

is part of a migration strategy for 
event-driven architectures

BEFORE

A point-to-point dependencies 
(accessing data directly from the 
underlying service)

AFTER

Post-data-liberation workflow 
 (the single source of truth & the elimination of direct 
coupling between systems)

Compromises for Data Liberation

In the perfect world: publish to 
stream before materializing

In reality: the legacy system will not 
be reading back from the liberated 
event stream

Possible reasons

Limited developer support

Expense of refactoring

Legacy support risk

Converting Liberated Data to Events

There should be explicitly defined schema.

Changes to the schema can only be 
made according to evolutionary 
rules

Downstream consumers should not 
be attempting to parse or interpret 
data on their own

Data Liberation Patterns

1. Query-based
You extract data by querying the 
underlying state store This can be performed on any data store

2. Log-based

You extract data by following the 
append-only log for changes to the 
underlying data structures

This option is available only for 
select data stores that maintain a 
log of the modifications made to the 
data

3. Table-based

In this pattern, you first push data to 
a table used as an output queue. 
Another thread or separate process 
queries the table, emits the data to 
the relevant event stream, and then 
deletes the associated entries.

This method requires that the data 
store support both transactions and 
an output queue mechanism, usually 
a standalone table configured for 
use as a queue

Data Liberation Frameworks

Kafka Connect

Apache Gobblin

Apache NiFi

Pattern 1. Liberating Data by Query

Types of queries

Bulk Loading query all records

Incremental Timestamp Loading
query all records with updated_at > 
max(updated_at)

Autoincrementing ID Loading
query all immutable records from 
outbox tables with id > max(id)

Custom Querying
can be any query specific to the 
business needs

Steps for Incremental Updating

1. updated_at or new id should be 
populated for every change

2. determine the frequency of 
polling and the latency of the 
updates

3. Perform single Bulk load and then 
start incrementing loads

Pros

Customizability

Independent polling periods

Isolation of internal data models

Cons

Required updated_at timestamp

Untraceable hard deletions

Brittle dependency between data 
set schema and output event 
schema

Intermittent capture

Production resource consumption

Variable query performance due to data changes

Pattern 2. Liberating Data Using 
Change-Data Capture (CDC) Logs

Bootstrapping

You will need to take a snapshot of 
the existing data prior to starting 
the change-data capture process 
from the data store’s log

You must ensure that there is 
overlap between the records in the 
bootstrapped query results and the 
records in the log, such that you do 
not accidentally miss any records.

Must checkpoint progress when 
capturing events from the 
changelog can use at-least-once production of records since the event data is idempotent

Debezium is one of solutions for 
popular DBs (MySQL & Postgres)

SQL Server does not have change-
data capture logs but instead have 
Change Data Tables

Kafka Connect and Debezium can 
connect to such Change Data 
Tables too (by using use the query-
based pattern)

Pros

Delete tracking

Minimal effect on data store 
performance

Low-latency updates

Cons

Exposure of internal data models

Denormalization outside of the data store

Brittle dependency between data 
set schema and output event 
schema

Pattern 3. Liberating Data Using 
Outbox Tables

Both the internal table updates and 
the outbox updates must be 
bundled into a single transaction

Performance Considerations

The cost of this approach can be high

it should be evaluated on a case-by-
case basis and balanced against the 
costs of a reactive strategy such as 
parsing the change-data capture 
logs

Isolating Internal Data Models 
(essential for ensuring decoupling 
and independence of services)

Option 1

Major benefit is that an outbox does 
not need to map 1:1 with an internal 
table!

Outbox can denormalize data to 
expose the data needed by 
consumers and NOT expose internal 
data

Option 2

Denormalize the streams with a 
downstream event processor

EVENTIFICATION of public User events using private User, Location, 
and Employer event streams

Ensuring Schema Compatibility

Schema serialization (and therefore, 
validation) can also be built into the 
capture workflow

Serializing change-data before writing to outbox table

performance may suffer

Alternative with better performance

Serializing change-data after writing to outbox table, as part 
of the publish- ing process

But failure to serialize data should 
be thought out

This usually leads to large number 
of unserializable events in your 
outbox.

Pros

Multilanguage support

Isolation of the internal data model

Before-the-fact schema enforcement

Denormalization

Cons

Required application code changes

Business process performance impact

Data store performance impact

Capturing Change-Data Using Triggers

Using a trigger to capture changes to a user table

Usually cannot validate the change-
data with the event schema during 
the execution of a trigger

However Postgres supports C, 
Python, Perl - so we CAN techically 
implement validation

such triggers are too expensive

this increases the complexity

It is best to keep the change-data 
table (outbox table) in sync with the 
format of the output event schema After-the-fact validation and production to the output event stream

Try to avoid the use of triggers if 
you can instead use more modern 
functionality for generating or 
accessing change-data as all 
triggers are SLOW

Pros

Supported by most databases

Low overhead for small data sets

Customizable logic

Cons

Performance overhead

Change management complexity

Poor scaling

After-the-fact schema enforcement

Making Data Definition Changes to 
Data Sets Under Capture

Data migrations need to be 
suported by CDC

Handling After-the-Fact Data 
Definition Changes for the Query 
and CDC Log Patterns can detect DDL changes only after the fact

For the query pattern

1. The schema of the data is inferred at query time

2. The schema of data is compared 
against the schema of event stream 
(schema compatibility rules applied)

For the CDC log pattern

1. Data definition updates are 
captured to CDC log too

Currently, the Debezium connector 
supports only MySQL’s data defi- 
nition changes

2. The schema is inferred from them

3. The schema of data is compared 
against the schema of event stream 
(schema compatibility rules applied)

Handling Data Definition Changes 
for Change-Data Table Capture 
Patterns is integrated with the development 

cycle of the source system

Changes require a schema evolution 
to be compatible with the output 
event stream (according to its 
schema compatibility rules)

Otherwise it will prevent the data 
from being written to the change- 
data table

Sinking Event Data to Data Stores

A typical use of event sinking is 
replacing direct point-to-point 
couplings between legacy systems

tools
Kafka Connect

Standalone microservice sinks

The Impacts of Sinking and 
Sourcing on a Business

Centralized framework (for CDC)

Allows for lower-overhead 
processes for liberating data

Two main traps

The data sourcing/sinking responsi-
bilities are now shared between 
teams

Systems can become too reliant 
upon frameworks and connectors to 
do their event-driven work for them

CDC tools are not the final 
destination in moving to an event- 
driven architecture, but instead are 
primarily meant to help boot-strap 
the process

Perhaps counterintuitively, it’s 
important to minimize the usage of 
the CDC framework and have teams 
implement their own change-data 
capture (such as the outbox 
pattern) despite the additional up-
front work this may require


