
Adam Bellemare - Building Event-
Driven Microservices

5. Event-Driven Processing Basics

Typical stream-sourced event-driven microservice pseudocode

Composing Stateless Topologies

Transformations

process a single event and emit 
zero or more output events

Types of transformation

Filter

Map need to repartition if key was changed

MapValue

Custom transforms

Branching and Merging Streams 2 stream branching scenarios

Routing based on particular 
properties (e.g., country, time zone, 
origin, product, or any number of 
features)

Emitting results to different output 
event streams (e.g. outputting 
events to a dead-letter stream)

Merging streams
rarely happens as microservices can 
consume many inputs

Repartitioning Event Streams

Repartitioning is the act of 
producing a new event stream when 
one of the following happens

Different partition count Increase an event stream’s partition count

to increase downstream parallelism

or to match the number of partitions 
of another stream for copartitioning 
(covered later in this chapter)

Different event key

Change the event key to ensure that 
events with the same key are routed 
to the same partition

Different event partitioner

Change the logic used to select 
which partition an event will be 
written to

example

Copartitioning Event Streams

Copartitioning is the repartition of 
an event stream into a new one with 
the same partition count and 
partition assignor logic as another 
stream

This is an important concept for 
stateful stream processing, as 
numerous stateful operations (such 
as streaming joins)

example

Assigning Partitions to a Consumer Instance

Each microservice maintains its own 
unique consumer group represen-
ting the collective offsets of its input 
event streams

Assigning Partitions with the 
Partition Assignor

A partition assignor ensures that 
partitions are distributed to the 
processing instances in a balanced 
and equitable manner

Assigning Copartitioned Partitions

The partition assignor is also 
responsible for ensuring that any 
copartitioning requirements are met

It is good practice to have the 
partition assignor implementation 
check to see that the event streams 
have an equal partition count and 
throw an exception on inequality.

Partition Assignment Strategies

The goal of a partition assignment 
algorithm is to ensure that partitions 
are evenly distributed across the 
consumer instances, assuming that 
the consumer instances are equal in 
processing capabilities

Strategies

Round-robin assignment When the number of consumer 
instances changes the partition 
assignments should be reblanced

Static assignment

This option is most useful when 
large volumes of stateful data are 
materialized on any given instance, 
usually for internal state stores

Custom assignment

For example, assignment could be 
based on the current lag in the input 
event streams, ensuring an equal 
distribution of work across all of 
your consumer instances

Recovering from Stateless 
Processing Instance Failures

the same as simply adding a new 
instance to a consumer group


