
Adam Bellemare - Building Event-
Driven Microservices

7. Stateful Streaming

State Stores and Materializing State 
from an Event Stream

Materialized state
A projection of events from the 
source event stream (immutable)

State store
Where your service’s business state 
is stored (mutable)

There are 2 types Internal and External state stores

Recording State to a Changelog 
Event Stream

A state store with changelogging enabled

State store being restored from a changelog

Materializing State to an

Internal State Store

Global state store

Materializes the data of ALL 
partitions for a given event stream

Global materialized state and nonglobal materialized state

Advantages

Scalability requirements are 
offloaded from the developer

High-performance disk-based options

Flexibility to use network-attached disk

Disadvantages
Limited to using runtime-defined disk

Wasted disk space

Scaling and Recovery
Using HOT REPLICAS

Stream-table join with three instances and two 
hot replicas per materialized input partition

Rebalance due to instance 1 termination

Normal processing with two instances and two hot 
replicas per materialized input partition

Tradeoff: use of additional disk to 
maintain the replicas in exchange for 
the reduction in downtime due to an 
instance failure

Restoring and scaling FROM 
CHANGELOGS Downtime

Restoring and scaling FROM INPUT 
EVENT STREAMS

Re-consume all of its input events 
from the very beginning of its 
assigned event stream partitions

Downtime

Can take much longer to rebuild 
state than restoring from a 
changelog

External State Store

Do not share direct state access 
with other microservices.

I believe it is about ideal world. In 
real life we CAN share state (db) to 
save time or resources!

Advantages
Full data locality

Can provide access to all materiali-
zed data for each microservice 
instance (any joins can be executed)

though each instance is still 
responsible for materializing its own 
assigned partitions

Technology
Can leverage technology that the 
organization is already familiar with

Drawbacks

Management of multiple technologies

Each team must fully manage the 
external state stores for its 
microservices

Performance loss due to network latency

Financial cost of external state store services

Full data locality

For example, one instance may 
attempt to join an event on a foreign 
key that has not yet been populated 
by a separate instance

Scaling and Recovery

Using the source streams

Using changelogs

Using snapshots

Most widely used

If the stored state is not idempotent 
and any duplicate events are not 
acceptable, then you should store 
your consumer’s partition offsets 
alongside the data within the data 
store.

Rebuilding vs Migrating State Stores

Rebuilding

the state is built exactly as specified 
by the new business logic

it takes time

Migrating

good when no need to reprocess older data e.g. new field added

complex migrations are riskier

Transactions and Effectively Once Processing

exactly once = effectively once

Idempotent writes (Idempotent production)

Commonly supported feature 
among event brokers

It cannot mitigate duplicates 
introduced through faulty business 
logic

Effectively Once w/ Client-Broker Transactions

may also be supported by your event broker
currently, full transactional support 
is offered only by Apache Kafka

Client-broker transactions - committing offsets and changelogs

Failed commit for a client-broker transaction

Restoring the state from the broker using changelogs and previous offsets

Effectively Once w/o Client-Broker Transactions

1. Any duplicate events created by 
upstream processes need to be 
identified and filtered out

2. State and offset management 
need to be updated in a local 
transaction to ensure that the event 
processing is applied only once to 
the system state

It is better to use an event broker 
and client that support idempotent 
writes than it is to try to solve 
deduplication after the fact

What can generate duplicate events

Producer fails to receive acknow-
ledgment from broker and retries

Producer crashes immediately after 
writing, before updating its own 
consumer offsets

Identifying duplicate events

Determine if the duplicates actually 
cause any problems In many cases they don't

How to do this? Generate unique ID for each event
such that any duplicates will 
generate the same unique hash

Guarding against duplicates

Perfect deduplication requires that 
each consumer indefinitely maintain 
a lookup of each dedupe ID already 
processed but it is usually too expensive

Can use rolling time-window or 
offset-window as a best-effort 
attempt

Use time-to-live (TTL), a maximum 
cache size, and periodic deletions

Deduplication using persisted state

Deduplication table should be 
rebuilt as any materialized table in 
case of failure

Maintaining consistent state

Normal transactional processing of events

Failure occurs in transactional processing

Recovery of offsets during state restoration process


