ofs Commit Offsets Only After

Processing Has Completed If you should not lose data
Designing Function-Based Solutions
as Microservices U§ Many functions can lead to highly
[fragmented solution that is difficult
K Less (number of functions) Is More to support
OpenWhisk
OpenFaaS

Open source

Kubeless
Choosing a Faa$S Provider : ofs Apache Pulsar

Amazon Web Services (AWS)

[

3rd party (Google Cloud Platform (GCP)

K Microsoft Azure

Function Event stream(s) Trigger Policies and metadata The function

myFunction myInputStream onNewEvent <>

Input event stream

4 main components to consider
. . . . Triggering logic
Building Microservices Out of Functions f l :

[

Error and scaling policies, with metadata

Warm function are put into
hibernation and then quickly reused
Cold Start and Warm Starts (warm start)

[

Event broker Faa$ platform with integrated consumer
1) Consume 2) Trigger

4) Commit offsets 3) Function results

[the maximum number of events to
Triggering Based on New Events: Batch size dispatch for processing
The Event-Stream Listener

(the maximum amount of time to wait
for additional events, instead of
\ Batch window triggering the function immediately

Function is establishing a client

Starting Functions with Triggers connection with the event broker,
the function does not consume the consuming the events, and

___events until after it is started committing back any offset updates

42 _ Triggering Based on Consumer Group Lag

scheduled to start up periodically

_ Triggering on a Schedule and at specific datetimes

OREILLY _ Triggering Using Webhooks
Building 0 0 . : : " "
Event-Driven 9. Microservices Using Function-as-a-Service (“serverless”)

Microservices deleting a file in a files
Leveraging Organizational Data at Scale e g yStem can
: Adam Bellemare - Building Event- trigger functions, as can the same

Driven Microservices modifications made to a row in a
\ Triggering on Resource Events data store

For instance, creating, updating, or

Adam Bellemare

ofy Faa$S are highly scalable

J f !

_ Performing Business Work with Functions Faa$S should be used with great care

when concurrency and determinism
_ are important!

U® This greatly reduces the flexibility of Function can have connection to
_Maintaining State Faa$S providers external state store

------ +-» Function A [--—-»] VML ... »{ Function B !
................... , s

Invoke :
Function A » FunctionB f----i-- Outslggae"\qent

Bounded context

Choreographed asynchronous function calls within a bounded context

-

_ Functions Calling Other Functions W

|Inputstream : Request: »
........... J tllesponse

_ Direct-Call Pattern | “ncion™
Request »

Function B
Outputstream « Response

i Bounded context

FunctionA

\ Orchestrated synchronous function calls within a bounded context

once it has completed its work

_ Termination and Shutdown (or it reaches the end of its allocated
K lifespan, generally in the range of 5-

10 minutes

Allocating Sufficient Resources

_ Tuning Your Functions

_ Batch Event-Processing Parameters

. Be careful about thrashing triggers
and scaling policy. Frequent
rebalancing of partition assignments

\ Scaling Your FaaS Solutions can be expensive for event brokers

