
Adam Bellemare - Building Event-
Driven Microservices

9. Microservices Using Function-as-a-Service (“serverless”)

Designing Function-Based Solutions 
as Microservices

Commit Offsets Only After 
Processing Has Completed If you should not lose data

Less (number of functions) Is More

Many functions can lead to highly 
fragmented solution that is difficult 
to support

Choosing a FaaS Provider

Open source

OpenWhisk

OpenFaaS

Kubeless

Apache Pulsar

3rd party

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

Microsoft Azure

Building Microservices Out of Functions

4 main components to consider

The function

Input event stream

Triggering logic

Error and scaling policies, with metadata

Cold Start and Warm Starts

Warm function are put into 
hibernation and then quickly reused 
(warm start)

Starting Functions with Triggers

Triggering Based on New Events: 
The Event-Stream Listener

Batch size
the maximum number of events to 
dispatch for processing

Batch window

the maximum amount of time to wait 
for additional events, instead of 
triggering the function immediately

Triggering Based on Consumer Group Lag the function does not consume the 
events until after it is started

Function is establishing a client 
connection with the event broker, 
consuming the events, and 
committing back any offset updates

Triggering on a Schedule
scheduled to start up periodically 
and at specific datetimes

Triggering Using Webhooks

Triggering on Resource Events

For instance, creating, updating, or 
deleting a file in a filesystem can 
trigger functions, as can the same 
modifications made to a row in a 
data store

Performing Business Work with Functions

FaaS are highly scalable

FaaS should be used with great care 
when concurrency and determinism 
are important!

Maintaining State
This greatly reduces the flexibility of 
FaaS providers

Function can have connection to 
external state store

Functions Calling Other Functions

Event-Driven Communication Pattern

Direct-Call Pattern

Choreographed asynchronous function calls within a bounded context

Orchestrated synchronous function calls within a bounded context

Termination and Shutdown

once it has completed its work

or it reaches the end of its allocated 
lifespan, generally in the range of 5–
10 minutes

Tuning Your Functions
Allocating Sufficient Resources

Batch Event-Processing Parameters

Scaling Your FaaS Solutions

Be careful about thrashing triggers 
and scaling policy. Frequent 
rebalancing of partition assignments 
can be expensive for event brokers


