
Adam Bellemare - Building Event-
Driven Microservices

11. Heavyweight Framework Microservices

2 characteristics of "heavyweight"

Requires independent cluster Usually rely on ZooKeeper

Uses it's own mechanism for 
handling failures, recovery, resource 
alloc, task distribution, communica-
tion, coordination...

While lightweight frameworks, FaaS 
and BPC usually rely on container 
management system (CMS)

A Brief History of Heavyweight Frameworks

Apache Hadoop, was released in 2006 batch-processing

Spark, Flink, Storm, Heron, and 
Beam come in later

streaming processing (or merged 
batch and streaming together)

The Inner Workings of Heavyweight Frameworks
A generic view of a heavyweight stream-
processing framework

Submitting a stream processing job to read 
from an event stream

Benefits and Limitations

Benefits

The heavyweight frameworks 
discussed in this chapter are 
predominantly analytical technolo-
gies And are well-designed for this

Limitations

Not designed with microservice-
style deployment in mind Require dedicated cluster setup

Most of them are JVM-based

Materializing entity stream into 
retained table is not supported out-
of-the-box by all frameworks

Cluster Setup Options and 
Execution Modes

Use a Hosted Service Amazon and Google have their offers here

Build Your Own Full Cluster

Create Clusters with CMS Integration

Deploying and running the cluster 
using the CMS

Specifying resources for a single job using the CMS

Spark and Flink enable you to 
directly leverage Kubernetes for 
scalable application deployment

Single job deployed on and managed by Kubernetes cluster

This deployment mode is nearly 
identical to how you would deploy 
non-heavyweight microservices and 
merges lightweight and BPC 
deployment strategies.

Application Submission Modes
Driver Mode

The driver coordinates with the 
cluster to ensure the progress of 
the application and can be used to 
report on errors, perform logging, 
and complete other operations Is it similar to orchestrator?

Cluster Mode

The entire application is submitted 
to the cluster for management and 
execution, whereupon a unique ID is 
returned to the calling function

Handling State and Using Checkpoints

Checkpoints

snapshots of the application’s 
current internal state, are used to 
rebuild state after scaling or node 
failures

Two main states

1. Operator state The pairs of <partitionId, offset>

2. Key state The pairs of <key, state>

A checkpoint with operator and key state

Scaling Applications and Handling 
Event Stream Partitions

Sample of daily cyclical data volume

Scaling an application is separate 
from scaling a cluster.

1. Scaling an Application While It Is Running
Requires external shuffle service 
(ESS) that assigns streams to 
instances (which can be dynamica-
lly added/removed)

2. Scaling an Application by 
Restarting It

is easy and is supported by all 
(pause stream, checkpoint app, 
stop the app, reinit app with new 
resources, reload state from 
checkpoint)

3. Autoscaling Applications

automatically scaling applications in 
response to specific metrics

supported by some frameworks

may require you to collect your own 
performance and resource utiliza-
tion metrics and wire them up to the 
scaling mechanism

Recovering from Failures
fault-tolerance features are built 
into the cluster framework

but can require you to configure 
additional steps when deploying 
your cluster

Multitenancy Considerations

When cluster grows the apps may 
affect each other and can cause 
apps to miss their service-level 
objectives (SLOs)

How to mitigate:
Run multiple smaller clusters

Namespacing

Languages and Syntax

Java and Scala

Python

SQL-like

Choosing a Framework

Determine how much operational 
overhead your organization is willing 
to authorize

monitoring, scaling, troubleshoo-
ting, debugging. and assigning 
costs

Consider SaaS

Apply the same considerations you 
gave to the selection of your CMS 
and event broker

Example: Session Windowing of 
Clicks and Views

Advertisement company displays 
advertisements and charges the 
clients by clicks and sessions 
(activities w/o 30 minutes break)

Session-generating processing topology from user views and clicks


