sent from client to server autono-
mously by your products (analytical
events)

-

Publish

Event receiver service viewevent [View event
Send stream
Click event
stream

Collecting analytical events from an external source

Client view event Request- Eventrouter |-
tent response h
application endpoint and publisher |-+

Autonomously Generated Events

-

f Client
. licati . Event receiver service Publish
Handling Autonomously Generated PRV |t senddick dlckevents
H L Request- (V1and V2) -
\ Analytical Events response Eventrouter | 1 ° »| Clickevent
- it and publisher stream
e i Send click endpoin
a Iilglattion)
. PP! -
Handling External Events (v2)

\ External sources generating analytical events with different versions

generated in response to a request
from one of your services

-

Consume +
Input t st
nput event stream request 5 iake Fexéle]g;?!
1) Consume events Requests response
Response ' endpoint
_ Reactively Generated Events pare!) Roceve
Business logic
4) Parse responses
Result event stream |« Producer and apply business logic
5) Produce output Microservice
Integrating with Third-Party

Request-Response APIs Integrating request-response APIs into event-driven workflows

Client

1) Client makes request

y

Load balancer
2) Load balancer
distributes request i
— v
REST AP , » Changelog
- H
v
- Event
Materialized H
table PO [stream A
EE——
Processing Event
topology stream B
Instance O Event broker

Overview of an EDM with a REST API
serving content to a client

1) Client makes request

Load balancer
2) Load balancer .

distributes request

-

3) Check metadata

I 5) Get data and return
for key location $

value to client

4) Forward request
toinstance with key
RESTAPI > RESTAPI
A A A
v v A 4
Materialized Materialized Materialized
table PO table P1 table P2
Processing Processing Processing
topology topology topology
Instance 0 Instance1

Using partition assignments to determine where
materialized state for a given key is located

' Instance 0
-Assigned: PO
Request: | Partitioner (10) = P1
getkey=10
Internal State Stores Instance 1
[2) Partitioner | _Assigned: P1, P2

indicates
keyisin P1

-

1) Apply
tioner

Serving Real-Time Requests with

k=]

Workflow illustrating the routing of a request
to the correct instance

N

U@ success-rate (calls w/o redirect) =

_ Simple (e.g. round robin) load balancer 1/ number of instances

Processing and Serving Stateful Data

[1) Request
v
Load balancer Load balancer
Partition-based routing code Partition-based routing code

2) Apply partitioner

4)Add
instance Microservice | | Microservice | | Microservice
instance 0 instance 1 instance 2

5) Consumer group leader updates load balancer
routing table on rebalance

Using the load balancer to correctly forward requests
based on consumer group ownership and partitioner
logic

instance 0 instance1

. ~
Microservice] {Mjcroservice

L

3) Route request
to correct instance

_ ofs Smart load balancer

oy All state is available for all instances No need to redirect!

-

7y Consumer group rebalances don't
need to rematerialize the internal
state in the new instance

-

6) Process state and return results

v 4) REST APl receives
(=) client request

Load 3) Load balancer routes it
balancer W RESTAPI
2) Client makes & || Processing . Event
request i [~]|__topology stream - PO
External Instance 0
state —_
Client store
RESTAPI
- : Processin, : Event
1) Materialize|| topofogyg i -stream-Pl
Serving Real-Time Requests with (__Instance1

External State Stores

An all-in-one microservice serving from external state
store; note that either instance could serve the
request

Serving requests via the materiali-
_ zing event-driven microservice

2) Load balancer 3) Receive request
routesit and get results
from state store
Load .
balancer [

A

External
state

1) Client makes RESTAPI

Event
stream - PO

request
Instance 0 i EYEIE
Client Vi oA stream - P1
icroservice Instance

o o . -
icroservice They reside within the same code
A microservice composed of separate executables—one

I. These two microservices are treated
N

repository and are tested, built, and

_Serving requests via a separate microservice for serving requests, the other for processing event as a single COMPOSITE SERVICE deployed together
OREILLY 2
Building
Event-Driven 13. Integrating Event-Driven and Request-Response Microservices)— 1) Create object 1) Create objct
Microservices L v v
Leverag\ngl)rgamza!lona.l Data at Scale Ad a m Bel | e m a re - B ui I d | n g Eve nt_ User GUI 3) Publish object User GUI
Driven Microservices v_ 2 (obctstream) | B | ezt
creation of
objectin
database N
4) Materialize 1
Adam Bellemare Microservice stream Microservice
) Direct handling of request Convert request into event
Handling requests directly versus turning them into events first
1. Response time for Ul should be < 100ms
Populate Layout Approve‘
newspaper) Editor _ Advertiser Release to
wrthrgd'seand Reject approval Reject approval printer
articles M N

A

Final approval

Workflow for populating a newspaper, with gating
based on approval by editor and advertiser

-

3) Obtain editor

T approval
STV
populator GUI Editor
7~ approvals |«
; stream

Editor Advertiser
approval GUI | approval GUI

Atticlesstream |.. | ¥ | o ——

Populated) | -
newspaper »
stream

1) Candidate 4
newspaper Approvals M.S.*,

Ads stream

A 4

Handling Requests Within an Event-
_ Driven Workflow

Layoutsstream |~

Newspaper S .,
populator M.S.

P

Processing Events for User Interfaces ("Approved)

newspaper
stream

4) Release approved

newspaper

Advértiser
approvals
stream

2) Obtain advertiser
approvals

_ Newspaper design and approval workflow as microservices

4) EditorI 3) Advertilser
Newspaper ﬂ Editor ,—---aPPI?\-E-S--- Advertiser
populator GUI Editor approvalGUI | i Advertiser approval GUI
Y approvals 7 i approvals i« 7
: stream)., Asummary stream.
Populated T TEditor- Y [
M newspaper e aﬁproved »
. stream i__PN.stream
1) Candidate 2) Propagate editor
Newspaper ..
populator M.S. [, ~ MeWsPaper ApprovalsM.S. | approved newspapers | approvals M.S.
<
Approved
newspaper
stream
5) Release approved
newspaper

Independent advertiser and editor approval services

Frontend = b= =
Frontend 1= = 1=
Frontend e team S| |fa So
__________________________ regaton | ____[|2 ||& 2
ayer
<C [=a] ()
Backend = = S 2 g g
Backend el elle| | e 5
team = = = g S g
2 a P S S S
Datastore S 5 S = = =
= = = Team 1 Team2
Monolithic backend Microservice backend Microfrontend approach
approach approach

Three main approaches to organizing products and teams for
customer-facing content

U® The most expensive

Microservice backend approach

-

_ "® Depends heavily on an aggregation layer

product-focused microservices independently owned by a single team

-

Composition-Based Microservices

oy Benefits of Microfrontends r Easy Alignment to Business

Requirements

Microfrontend approach

[

Potentially Inconsistent Ul Elements and Styling

\ U® Drawbacks of Microfrontends

_ Varying Microfrontend Performance

Enter city name
Experiences Experience information Reviews
Greattour ...
Inexpensive ...

Experiences search and review application, GUI mockup
version 1 with monolithic frontend

Micro-Frontends in Request-

H H Product Experiences reviews
Res ponse A p p| Ications Microfrontend Microfrontend
T p— S— ak
1 Enteryouraddress Distance from you (meters) "

(- ==

Experiences near Experience information ¥ Reviews
you

: (1| Greattour ...
: | | Inexpensive ...

Experiences search
Microfrontend

Example: Experience Search and
Review Application

Experiences search and review application, GUI mockup
version 2 with microfrontends

Frontend version1 Frontend version2
Frontend |Experiences search Experiences search Reviews
frontend frontend frontend
Experiences search Search Reviews
Backend and reviews
Datastore | = Materialized Materialized Materialized
key/value store geo-doc store key/value store
............ .‘_._...._......-...._............‘:, e W ——————
-------- [Stream—Experiences]
[Stream—User profiles] ------------
............pp| Stream—Experiences reviews | ¢
Publish revi >[P)N

Publish reviews

The flexibility of microfrontends paired with backend event-
_ driven micro- services

