
Adam Bellemare - Building Event-
Driven Microservices

14. Supportive Tooling

Microservice-to-Team Assignment System

It is important to explicitly track 
ownership of microservice 
implementations and event 
streams

Is it just a an information/documen-
tation or some working settings in 
Kafka?

Event Stream Creation and Modification

Teams will need the ability to create 
new event streams and modify them 
accordingly

Event Stream Metadata Tagging

Stream owner (service)

Personally identifiable information (PII)

Financial information

Namespace

Deprecation

Custom tags

Quotas

Quotas are generally established by 
the event broker at a universal level

You want to ensure at the very least 
that your entire cluster won’t be 
saturated by one service’s I/O 
requests

Schema Registry

Schema registry workflow for producing and 
consuming an event

Apache Kafka supports schemas in 
Apache Avro, Protobuf, and JSON 
formats

Schema Creation and Modification Notifications

are delivered via specific schema 
stream and clients can subscribe to 
it

Offset Management

Application reset: Resetting the offset When you want to start from the beginning

Application reset: Advancing the offset
Sometimes your service just need 
the newest data

Application recovery: Specifying the offset You can also start from specific point in time

Permissions and Access Control 
Lists (ACL) for Event Streams

Can be READ, WRITE, CREATE, 
DELETE, MODIFY, and DESCRIBE

Typical event stream permissions for a given microservice

Discovering Orphaned Streams and Microservices
If a stream has no consumers, it 
may be marked for deletion

State Management and Application Reset

Steps to reset the app

Delete a microservice’s internal 
streams and changelog streams

Delete any external state store 
materializations (if applicable)

Reset the consumer group offsets 
to the beginning for each input 
stream!

Q: What if the stream is very big? 
Moreover if we cannot keep all the 
events? Shouldn't we start not from 
the beginning then, but from some 
snapshot?

Consumer Offset Lag Monitoring

Consumer lag - the best indicator 
that microservice needs to scale up

We can scale up / scale down 
automatically

Monitoring systems Burrow for Apache Kafka

Streamlined Microservice Creation Process

1. Create a repository

2. Create any necessary 
integrations with the CI pipeline

3. Configure any webhooks or other dependencies

4. Assign ownership to a team using 
the microservice-to-team assign-
ment system.

5. Register for access permissions 
from input streams.

6. Create any output streams and 
apply ownership permissions.

7. Provide the option for applying a 
template or code generator to 
create the skeleton of the microser-
vice.

Container Management Controls

Container management service (CMS)

Teams should be able to DevOps 
(business decides what should be 
done by developers and what by 
Ops team)

Setting environment variables for 
their microservices

Indicating which cluster to run a 
microservice on (e.g., testing, 
integration, production)

Managing CPU, memory, and disk 
resources, depending on the needs 
of their microservices

Increasing and decreasing service 
count manually, or depending on 
service-level agreements and 
processing lag

Autoscaling on CPU, memory, disk or lag metrics

Cluster Creation and Management

Programmatic Bringup of Event Brokers

Programmatic Bringup of Compute Resources

Cross-Cluster Event Data Replication important for scaling up

Programmatic Bringup of Tooling

Dependency Tracking and Topology Visualization

Can use self-reporting system

consumers and producers report on 
their own consumption and 
production patterns it is effectively voluntary

Leveraging the permissions structure

microservice cannot operate 
without permissions

any changes in permissions update topology

uses of such a tool

Determine data lineage

Overlay team boundaries

Discover data sources

Measure interconnectedness and complexity

Map business requirements to 
microservices

Topology Example

Before change

Topology map of service connections

Topology graph measure of interconnectedness

After change

Topology map of service connections after 
reassignment of microservices

New measure of interconnectedness; differences are 
shown in brackets


