
Adam Bellemare - Building Event-
Driven Microservices

16. Deploying Event-Driven Microservices

Principles of Microservice Deployment

Give teams deployment autonomy

Implement a standardized 
deployment process

Provide necessary supportive tooling

Consider event stream reprocessing impacts

Adhere to service-level agreements (SLAs)

Minimize dependent service changes

Negotiate breaking changes with 
downstream consumers

Architectural Components of 
Microservice Deployment

Continuous Integration, Delivery, 
and Deployment Systems

the system used to build and deploy the code

Continuous integration (CI)

is the practice of automating the 
integration of code changes from 
multiple contributors into a single 
software project

Continuous delivery
the practice of keeping your 
codebase deployable

Continuous deployment the automated deployment of the build

A CI pipeline showcasing the difference between 
continuous delivery and continuous deployment

Container Management Systems 
(CMS) and Commodity Hardware the compute resources used by the microservices

The Basic Full-Stop Deployment Pattern

1. Commit code

2. Execute automated unit and 
integration tests

3. Run predeployment validation tests
Event stream validation

Schema validation

4. Deployment

Stop instances and perform any 
clean-up before deploying

Deploy

5. Run post-deployment validation tests

The Rolling Update Pattern

No breaking changes to any state stores

No breaking changes to the internal 
microservice topology

particularly relevant for implementa-
tions using lightweight frameworks

No breaking changes to internal 
event schemas

New fields have been added to the 
input events and need to be 
reflected in the business logic

New input streams are to be consumed

Bugs need to be fixed but don’t 
require reprocessing

Inadvertently altering the internal 
microservice topology is one of the 
most common mistakes It is a breaking change!

The Breaking Schema Change Pattern

ENTITY schema changes

Are more complex

will require reprocessing the 
necessary source data for the 
producer

Breaking schema change producer 
options for re-creating events with new 
schema

NON-ENTITY schema changes may not require reprocesiing

Two options

Eventual Migration via Two Event Streams

The producer write events with both 
the old and new format, each to its 
respective stream

assumptions

Events can be produced to both the 
old and new streams.

Eventual migration will not cause 
downstream inconsistencies

the main risk

the migration is never finished 
(similar-yet-different data streams 
remain in use indefinitely)

Synchronized Migration to the New Event Stream

The producer to create events 
strictly with the new format

assumptions

The event definition change is 
significant enough that the old 
format is no longer usable

Migration must happen synchro-
nously to eliminate downstream 
inconsistencies

the main risk
consumers may fail in their 
migration to the new event stream

but be unable to gracefully fall back 
to the old source of data

a rare case in practice

The Blue-Green Deployment Pattern

Blue-green deployment pattern

work well when

consume from event streams

events are produced only due to 
request-response activity

do not work when

the microservice produces events to 
an output stream in reaction to an 
input event stream

two microservices will overwrite or 
duplicate each other’s results

Use either the rolling update pattern 
or the basic full-stop deployment 
pattern instead


