
Alex Xu - System Design Interview (2nd ed.)

3. A Framework for System Design Interviews

Effective interview gives strong 
signals about abilities

to collaborate

to work under pressure

to resolve ambiguity constructively

to ask good questions

Red flags

over-engineering

narrow mindedness

stubbornness

A 4-step process for effective 
system design interview

Step 1. Understand the problem and 
establish design scope

Answering without a thorough 
understanding of the requirements 
is a huge red flag as the interview is 
not a trivia contest

Good questions

What specific features are we going to build?

How many users does the product have?

How fast does the company 
anticipate to scale up? What are the 
anticipated scales in 3 months, 6 
months, and a year?

What is the company’s technology 
stack? What existing services you 
might leverage to simplify the 
design?

Step 2. Propose high-level design 
and get buy-in

Come up with an initial blueprint for the design

Draw box diagrams with key 
components on the whiteboard or 
paper

Do back-of-the-envelope 
calculations to evaluate if your 
blueprint fits the scale cons-

"Design a news feed system" example

Feed publishing: when a user 
publishes a post, corresponding 
data is written into cache/database, 
and the post will be populated into 
friends’ news feed

Q: Why we think we need caches for 
writing? Isn't it over-engineering at 
this stage?

Newsfeed building: the news feed is 
built by aggregating friends’ posts in 
a reverse chronological order

Q: why we decide that feed is stored 
in cache and not in db? What if user 
want to see yesterday messages in 
his feed - cache could be expired 
already?

Q: why draw separate designs for 
separate scenarios? They should 
work together and should be in a 
single design!

Step 3. Design deep dive "Design a news feed system" example Feed publishing Q: why did we we select a graph db here?

Newsfeed building

Q: Why Auth/Rate limit have direct 
connectivity to User (arrow #6)? 
Why rate limit after load balancer - 
it should be stateful then?

Q: Should auth be stateless here 
(JWT-like)? BTW when it can be 
stateless and when it should be 
stateful?

Step 4. Wrap up

Identify the system bottlenecks and 
discuss potential improvements

Never say your design is perfect 
and nothing can be improved!

Give a recap of your design

Error cases (server failure, network 
loss, etc.) are interesting to talk 
about

Operation issues are worth 
mentioning. How do you monitor 
metrics and error logs? How to roll 
out the system?

How to handle the next scale curve 
is also an interesting topic.

what changes do you need to make 
to support x10 more users

Propose other refinements you need 
if you had more time

Dos and Donts

Dos

Always ask for clarification Do not assume your assumption is correct

Understand the requirements of the problem.

There is neither the right answer nor 
the best answer.

Let the interviewer know what you are thinking.

Suggest multiple approaches if possible.

Once you agree with your intervie-
wer on the blueprint, go into details 
on each component.

Bounce ideas off the interviewer.

Never give up.

Dont's

Don't be unprepared for typical 
interview questions.

Don’t jump into a solution without 
clarifying the requirements and 
assumptions.

Don’t go into too much detail on a 
single component in the beginning Give the highlevel design first then drills down

If you get stuck, don't hesitate to ask for hints

Again, communicate. Don't think in silence.

Don’t think your interview is done 
once you give the design

You are not done until your 
interviewer says you are done

Ask for feedback early and often

Time allocation on each step

Step 1. Understand the problem and 
establish design scope 3 - 10 minutes

Step 2. Propose high-level design 
and get buy-in 10 - 15 minutes

Step 3. Design deep dive 10 - 25 minutes

Step 4. Wrap up 3 - 5 minutes


