
Alex Xu - System Design Interview (2nd ed.)

4. Design a Rate Limiter

Benefits of using an API rate limiter

Prevent resource starvation caused 
by Denial of Service (DoS) attack

Reduce cost

Prevent servers from being 
overloaded

Step 1. Understand the problem and 
establish design scope Requirements

Accurately limit excessive requests

Low latency. The rate limiter should 
not slow down HTTP response time

Use as little memory as possible

Distributed rate limiting. The rate 
limiter can be shared across 
multiple servers or processes

Exception handling. Show clear 
exceptions to users when their 
requests are throttled

High fault tolerance. If there are any 
problems with the rate limiter (for 
example, a cache server goes 
offline), it does not affect the entire 
system.

Step 2. Propose high-level design 
and get buy-in

Where to put the rate limiter?

Client-side implementation can easily be forged by malicious actors

Server-side implementation

Rate limiter at the API servers (on 
the server-side)

Rate limiter middleware (in a gateway)

API gateway usually suports

rate limiting

SSL termination

authentication

IP whitelisting

servicing static content

Algorithms for rate limiting

Token bucket Params

1. Bucket size: the maximum 
number of tokens allowed in the 
bucket

2. Refill rate: number of tokens put 
into the bucket every second Actually there is a third parameter - internal

Pros

The algorithm is easy to implement.

Memory efficient

Token bucket allows a burst of 
traffic for short periods

A request can go through as long as 
there are tokens left

Cons
It might be challenging to tune two 
parameters properly

Leaking bucket

Params

1. Bucket size: it is equal to the 
queue size. The queue holds the 
requests to be processed at a fixed 
rate

2. Outflow rate: it defines how many 
requests can be processed at a 
fixed rate, usually in seconds

Pros

Memory efficient given the limited queue size

Requests are processed at a fixed 
rate therefore it is suitable for use 
cases that a stable outflow rate is 
needed

Cons

A burst of traffic fills up the queue 
with old requests, and if they are 
not processed in time, recent 
requests will be rate limited

It might not be easy to tune two 
parameters properly

Fixed window counter

Pros

Memory efficient

Easy to understand

Resetting available quota at the end 
of a unit time window fits certain 
use cases.

Cons

Spike in traffic at the edges of a 
window could cause more requests 
than the allowed quota to go 
through Q: the same problem exists with 

Token bucket and Leaking buckets!?

Sliding window log

Fixes the issue of fixed window

Q: why do we keep 1:00:50 in log if 
it was rejected? We would not serve 
promised number of requests 
because of this! I would not log rejected requests!

Pros
Rate limiting implemented by this 
algorithm is very accurate

In any rolling window, requests will 
not exceed the rate limit

Cons

The algorithm consumes a lot of 
memory because even if a request 
is rejected, its timestamp might still 
be stored in memory

Sliding window counter Approach #1 (other approaches exist)

Number of requests = 

Requests in current window + 
requests in the previous window * 
overlap percentage of the rolling 
window and previous window

Using this formula, we get 3 + 5 * 
0.7% = 6.5 request. Depending on 
the use case, the number can either 
be rounded up or down

Pros

It smooths out spikes in traffic 
because the rate is based on the 
average rate of the previous window

Q: Is it good? I thought we wanted 
precise limitation

Memory efficient

Cons
It only works for not-so-strict look back window

It is an approximation of the actual 
rate because it assumes requests in 
the previous window are evenly 
distributed

However, this problem may not be 
as bad as it seems: At Cloudflare 
only 0.003% requests are wrongly 
accepted

High-level architecture

Databases are not good idea here In-memory cache is much better

because
They are fast

They provide time-based expiration strategy

e.g. Redis is often choosen
INCR

EXPIRE

Q: considering that we do not want 
precise counting we can get rid of 
Redis (or other external component) 
and calculate everything in-memory 
in a single service(process). If it is 
load-balanced just assume that 
proportions are equal

Step 3. Design deep dive

Unanswered questions during step #2

How are rate limiting rules created? 
Where are the rules stored?

How to handle requests that are rate limited?

Rate limiting rules

Examples from Lyft's open sourced Rate Limiter

Exceeding the rate limit

We can decide to return HTTP 429 
response code or can postpone the 
request to process it later

Rate limiter headers

The rate limiter returns the following 
HTTP headers to clients

X-Ratelimit-Remaining
The remaining number of allowed 
requests within the window

X-Ratelimit-Limit
It indicates how many calls the 
client can make per time window

X-Ratelimit-Retry-After

The number of seconds to wait until 
you can make a request again 
without being throttled

Q: we simply return a window here 
or a real wait time for one next 
request?

Detailed design

Q: Should rate limiter middleware 
loads rules from the cache for every 
request??? This is very inefficient

Rate limiter in a distributed 
environment Two challenges

Race condition
Two strategies

Lua script

Sorted sets data structure in Redis Q: How would this help?

Q: I believe Redis has atomic 
operation for this already (kind of 
"build-in pre-compiled Lua script")

Synchronization issue

When multiple rate limiter servers 
are used, synchronization is 
required

Solutions

Use sticky sessions

Use centralised Redis

Performance optimization

1. A multi-data center setup
It is crucial for a rate limiter

because latency is high for users 
located far away from the data 
center

2. Synchronize data with an 
eventual consistency model

Monitoring

It is important to gather analytics 
data to check whether the rate 
limiter is effective We want to make sure

The rate limiting algorithm is effective

The rate limiting rules are effective

Step 4. Wrap up Extra points to discuss

Hard vs soft rate limiting

Hard
The number of requests cannot 
exceed the threshold

Soft
Requests can exceed the threshold 
for a short period

Rate limiting at different levels

Layer 1: Physical layer

Layer 2: Data link layer

Layer 3: Network layer
e.g. can apply rate limiting by IP 
addresses using Iptables

Layer 4: Transport layer

Layer 5: Session layer

Layer 6: Presentation layer

Layer 7: Application layer We covered only this level this this chapter!

Avoid being rate limited Design your client with best practices

Use client cache to avoid making 
frequent API calls

Understand the limit and do not 
send too many requests in a short 
time frame

Include code to catch exceptions or 
errors so your client can gracefully 
recover from exceptions

Add sufficient back off time to retry logic


