. Consistent hashing is important for
horizontal scaling!

-

A common way to balance the load for N servers serverindex = hash(key) % N where N is the size of the server pool

The rehashing problem (
e \ BUT if one server goes down and N-=1 U® then most keys will be redistributed! oy CONSISTENT hashing mitigates this problem

//

rom Wikipedia: CONSISTENT
HASHING is a special kind of
hashing such that when a hash table
is re-sized and consistent hashing is
used, only k/n keys need to be
remapped on average

where k is the number of keys,

and n is the number of slots.

In contrast, in most traditional hash
tables, a change in the number of
array slots causes nearly all keys to
be remapped

Consistent hashing

© i.e. only hashes that belong to the
server that went down needs to be
remapped

SHA-1's hash space goes from x0=0
to xn=2"160 -1

(x0 xn

(LT T T T T T T T T T T T T T I T T TI T
Hash space
(xn\ X0
Hash space and hash ring /
(
\ Hash ring
Servers /®\
s3 SO
s0 = server 0
server 0 s1=server 1
s2 = server 2
s3 = server 3
. kO = key0
k1 = key1
k2 = key2
. k3 = key3
1. Map servers and keys on to the server3
ring using a uniformly distributed i dul .
hash function 1. no modular operation

-

Steps

/ ‘ Servers /Q
S3 SO
s0 = server 0
server 0 s1=server 1
s2 = server 2
s3 = server 3
k1 = key1
k2 = key2
. k3 = key3
2. To find out which server a key is i
mapped to, go clockwise from the

key position until the first server on

\ the ring is found Server lookup
Servers :
s3 3 .= »s0
s !

s0 = server 0
s1 = server 1
s2 = server 2

server 0

s3 =server 3
. kO = keyO
k1 = key1
Add a server . e
server 3
adding a new server will only require . key2 iﬂec'; a ne(;/v iert;/er 4dl's fgll;ietdaonly
\ redistribution of a fraction of keys P eyl needs to be redistrioute
BASIC approach (introduced by
Karger et al. at MIT) /@-\
Servers
(s3 SO
s0 = server 0
SERE s1 = server 1
s2 = server 2
s3 = server 3
. k0 = keyO
k1 = key1
k2 = key2
. k3 = key3
_ Remove a server
server 3 s1
When a server is removed, only a
small fraction of keys require when server 1is removed, only key1
redistribution with consistent b dt ! 2y y
hashing must be remapped to server
o
™) /_\
Servers
S3 SO
s0 = server 0
server 0 s1=server1
. . . s2 = server 2
5. Design Consistent Hashing |— $3 = server 3

U® 1.1t is impossible to keep the same if s11is removed, s2's partition

size of partitions on the ring for all server3 st (highlighted with the bidirectional

. . servers, considering a server can be ar3r’ows) ﬁ‘twice as large as s0 and
Alex Xu - System Design Interview (2nd ed.) added or removed s3's partition.

> (-

53/_§O\
Servers
SO

. . . s0 = server 0
\ Two issues in the basic approach server 0 s1 = server 1
s2 = server 2
. s3 = server 3

server 3

U 2.1t is possible to have a non-
_ uniform key distribution on the ring

ofy A technique called virtual nodes or
replicas is used to solve these

\ problems

A virtual node refers to the real
node, and each server is represen-
ted by multiple virtual nodes on the
ring

4 1

Servers

sO 50 =server0
server 0 s1 =server 1

S0_o
. sO

So=1 SO s0_0, s0_1, and sO_2 represent server 0
S | ——" /
e _ s1.0,s11, and s1_2 represent server 1
Servers
sSO_2
sO = server 0
server 0 s1 =server 1

_ VIRTUAL NODES approach

. h

To find which server a key is stored
on, we go clockwise from the key's
location and find the first virtual
_ hode encountered on the ring

| relieve we evenly redistribute
affected virtual nodes when server
is removed

F2 How exactly virtual nodes are
redistributed when server is added
_ or removed?

| believe we evenly take out closest
virtual nodes when new server is
added

But how exactly is it done? There
can be some nuances here

ol ,AS the number qf v{rtugl nodes Standard deviation measures how 100 virtual nodes => 10% standard deviation
increases, the distribution of keys data are spread out

N becomes more balance - _ 200 virtual nodes => 5% standard deviation

U® However, more spaces are needed
\ to store data about virtual nodes

Minimized keys are redistributed
when servers are added or removed

It is easy to scale horizontally
Benefits of consistent hashing because data are more evenly

(distributed
Mitigate hotspot key problem

Amazon Dynamo db

\ Wrap up

-

Apache Cassandra cluster

Consistent hashing is widely used in
real-world systems

Discord chat application

(
_ Akamai CDN
_

Maglev network load balancer

