
Alex Xu - System Design Interview (2nd ed.)

5. Design Consistent Hashing

Consistent hashing is important for 
horizontal scaling!

The rehashing problem

A common way to balance the load for N servers serverIndex = hash(key) % N where N is the size of the server pool

BUT if one server goes down and N-=1 then most keys will be redistributed! CONSISTENT hashing mitigates this problem

Consistent hashing

from Wikipedia: CONSISTENT 
HASHING is a special kind of 
hashing such that when a hash table 
is re-sized and consistent hashing is 
used, only k/n keys need to be 
remapped on average

where k is the number of keys,

and n is the number of slots.

In contrast, in most traditional hash 
tables, a change in the number of 
array slots causes nearly all keys to 
be remapped

i.e. only hashes that belong to the 
server that went down needs to be 
remapped

Hash space and hash ring

SHA-1’s hash space goes from x0=0 
to xn=2^160 - 1

Hash space

Hash ring

BASIC approach (introduced by 
Karger et al. at MIT)

Steps

1. Map servers and keys on to the 
ring using a uniformly distributed 
hash function no modular operation

2. To find out which server a key is 
mapped to, go clockwise from the 
key position until the first server on 
the ring is found Server lookup

Add a server

adding a new server will only require 
redistribution of a fraction of keys

after a new server 4 is added, only 
key0 needs to be redistributed

Remove a server

When a server is removed, only a 
small fraction of keys require 
redistribution with consistent 
hashing

when server 1 is removed, only key1 
must be remapped to server 2

Two issues in the basic approach

1. It is impossible to keep the same 
size of partitions on the ring for all 
servers, considering a server can be 
added or removed

if s1 is removed, s2’s partition 
(highlighted with the bidirectional 
arrows) is twice as large as s0 and 
s3’s partition.

2. It is possible to have a non-
uniform key distribution on the ring

A technique called virtual nodes or 
replicas is used to solve these 
problems

VIRTUAL NODES approach

A virtual node refers to the real 
node, and each server is represen-
ted by multiple virtual nodes on the 
ring

s0_0, s0_1, and s0_2 represent server 0

s1_0, s1_1, and s1_2 represent server 1

To find which server a key is stored 
on, we go clockwise from the key’s 
location and find the first virtual 
node encountered on the ring

How exactly virtual nodes are 
redistributed when server is added 
or removed?

I relieve we evenly redistribute 
affected virtual nodes when server 
is removed

I believe we evenly take out closest 
virtual nodes when new server is 
added

But how exactly is it done? There 
can be some nuances here

As the number of virtual nodes 
increases, the distribution of keys 
becomes more balance

Standard deviation measures how 
data are spread out

100 virtual nodes => 10% standard deviation

200 virtual nodes => 5% standard deviation

However, more spaces are needed 
to store data about virtual nodes

Wrap up

Benefits of consistent hashing

Minimized keys are redistributed 
when servers are added or removed

It is easy to scale horizontally 
because data are more evenly 
distributed

Mitigate hotspot key problem

Consistent hashing is widely used in 
real-world systems

Amazon Dynamo db

Apache Cassandra cluster

Discord chat application

Akamai CDN

Maglev network load balancer


