
Alex Xu - System Design Interview (2nd ed.)

6. Design a Key-Value store

A key-value store = a key-value database is a non-relational database

What we want to design operations:
put(key, value)

get(key)

Understand the problem and
establish design scope

There is always a tradeoff of read,
write, and memory usage! Assume we want

The size of a key-value pair is small:
less than 10 KB

Ability to store big data

High availability: The system
responds quickly, even during
failures

High scalability: The system can be
scaled to support large data set

Automatic scaling: The addition/
deletion of servers should be
automatic based on traffic

Tunable consistency

Low latency

Single server key-value store

Very fast

Fitting everything in memory may be
impossible due to the space
constraint

Two optimisations can be done

Data compression

Store only frequently used data in
memory and the rest on disk

But still single server can reach its
capacity very quickly

DISTRIBUTED key-value store

CAP (Consistency, Availability,
Partition Tolerance) theorem for all
DISTRIBUTED systems

It is impossible for a distributed
system to simultaneously provide
more than two of these three
guarantees: consistency, availability,
and partition tolerance

Consistency

consistency means all clients see
the same data at the same time no
matter which node they connect to

Q: what it means "the same time"?
E.g. if we can wait an hour is this
theorem still working?

Availability

availability means any client which
requests data gets a response even
if some of the nodes are down

Partition Tolerance
a partition indicates a communica-
tion break between two nodes

Partition tolerance means the
system continues to operate despite
network partitions

CP (consistency and partition
tolerance) systems

a CP key-value store supports
consistency and partition tolerance
while sacrificing availability.

AP (availability and partition
tolerance) systems

an AP key-value store supports
availability and partition tolerance
while sacrificing consistency

CA (consistency and availability) systems

a CA key-value store supports
consistency and availability while
sacrificing partition tolerance

Since network failure is unavoidable,
a distributed system must tolerate
network partition. Thus, a CA
system cannot exist in real-world
applications.

Real-world distributed systems

Consistency over Availability (CP system)

we must block all write operations
to n1 and n2 to avoid data inconsis-
tency among these three servers,
which makes the system unavailable e.g. bank systems

Availability over Consistency (AP system)

the system keeps accepting reads,
even though it might return stale
data

For writes, n1 and n2 will keep
accepting writes, and data will be
synced to n3 when the network
partition is resolved

Q: I believe that if Node 3 is down
then there still can be NO problem -
after we recognized that Node 3 is
down we can just consider there are
now only two nodes and keep
working with them only and
rebalance further load only to them
- so we keep having Availability and
Consistency. When Node 3 is up we
sync it to others and then rebalance
the load. Am I missing something?

System components

Data partition

We use consistent hashing for this
(see previous chapter)

Automatic scaling

servers could be added and
removed automatically depending
on the load

Heterogeneity

the number of virtual nodes for a
server is proportional to the server
capacity

For example, servers with higher
capacity are assigned with more
virtual nodes.

Data replication
To achieve high availability and
reliability, data must be replicated
asynchronously over N servers,
where N is a configurable parameter

With virtual nodes we choose N
unique servers (not N virtual nodes
because they can belong to fewer
servers)

For better reliability, replicas are
placed in different data centers,
connected through high-speed
networks

Consistency

Quorum consensus can guarantee
consistency for both read and write
operations

N = The number of replicas

W = A write quorum of size W

For a write operation to be
considered as successful, write
operation must be acknowledged
from W replicas.

R = A read quorum of size R

For a read operation to be
considered as successful, read
operation must wait for responses
from at least R replicas

Some of the possible setups

If R = 1 and W = N, the system is
optimized for a fast read

Q: No need to resolve
inconsistency?

If W = 1 and R = N, the system is
optimized for fast write

If W + R > N, strong consistency is
guaranteed (Usually N = 3, W = R =
2)

At least one overlapping node that
has the latest data to ensure
consistency

If W + R <= N, strong consistency is
not guaranteed

Consistency models

Strong consistency

any read operation returns a value
corresponding to the result of the
most updated write data item

Weak consistency
subsequent read operations may
not see the most updated value

Eventual consistency

Given enough time, all updates are
propagated, and all replicas are
consistent

Recommended model for key-value storage

Inconsistency resolution: Versioning

Example of conflict

Solution: versions using a vector
clock - a [server, version] pair

Q: how exactly client should solve
inconsistency?

two notable downsides

vector clocks add complexity to the client

the [server: version] pairs in the
vector clock could grow rapidly

To fix this problem, we set a
threshold for the length, and if it
exceeds the limit, the oldest pairs
are removed

Handling failures

Failure detection

In a distributed system, it is
insufficient to believe that a server
is down because another server
says so

1. All-to-all multicasting is a
straightforward solution inefficient when many servers are in the system

2. Gossip protocol (one of decentra-
lized failure detection methods)

Each node periodically sends
heartbeats to a set of random nodes

Node s0 sends heartbeats that
include s2’s info to a set of random
nodes. Once other nodes confirm
that s2’s heartbeat counter has not
been updated for a long time, node
s2 is marked down, and this
information is propagated to other
nodes.

Handling TEMPORARY failures

In the strict quorum approach, read
and write operations could be
blocked

Sloppy quorum improves availability

Instead of enforcing the quorum
requirement, the system chooses
the first W healthy servers for writes
and first R healthy servers for reads
on the hash ring. Offline servers are
ignored

"hinted handoff" - another server
processes requests temporarily

Handling PERMANENT failures We implement an anti-entropy
protocol to keep replicas in sync

A MERKLE TREE is used for
inconsistency detection and
minimizing the amount of data
transferred

Wikipedia: A hash tree or Merkle
tree is a tree in which every non-leaf
node is labeled with the hash of the
labels or values (in case of leaves)
of its child nodes. Hash trees allow
efficient and secure verification of
the contents of large data structures

the amount of data needed to be
synchronized is proportional to the
differences between the two
replicas, and not the amount of data
they contain

In real-world systems, the bucket
size is quite big

For instance, a possible configura-
tion is one million buckets per one
billion keys, so each bucket only
contains 1000 keys

Handling data center outage
it is important to replicate data
across multiple data centers That's all, folks

System architecture diagram

There is no single point of failure as every node
has the same set of responsibilities

Write path

Read path If data is in the memory If data is not in the memory

The bloom filter is used to figure out
which SSTables might contain the
key. Q: how bloom filter works?

Summary

