U® Traditional single server DB with

auto_increment is not large enough
for distributed systems

-

IDs must be unique

IDs are numerical values only

Step 1. Understand the problem and

establish design scope IDs fit into 64-bit

-

IDs are ordered by date

Ability to generate over 10,000
unique IDs per second

)))

\
1,3,5..
E=E=

Web servers

(Using DB's auto_increment feature
but increase by k where k is the number of database servers in use

Pros ofy It solves some scalability issues

Multi-master replication a

(

U® Hard to scale with multiple data centers
U® IDs do not go up with time across
_ Cons multiple servers

U® |t does not scale well when a server
is added or removed

UUID is a 128-bit number used to
identify information in computer

example: 09c93e62-50b4-468d-
systems

bf8a-c07e1040bfb2

V: N

: |

. Web Sever Web Sever Web Sever Web Sever i

{ i

: ID gen ID gen ID gen ID gen S
§ Lussvassusasseaanast Nussseseswassdeneest Seeispesevasvaimieua® e weide e ais e s

'

from Wikipedia: after generating 1
billion UUIDs every second for
approximately 100 years would the
probability of creating a single
duplicate reach 50%

Universally unique identifier (UUID) e

(

ofy Generating UUID is simple No coordination between servers is needed

Pros each web server is responsible for
oy The system is easy to scale generating IDs they consume
U® IDs are 128 bits long, but our
requirement is 64 bits
_ Cons (U® 1Ds do not go up with time
Step 2. Propose high-level design
and get buy-in Possible options U® IDs could be non-numeric
(
Flicker developed ticket servers to
generate distributed primary keys
\ o
Web Sever Web Sever Web Sever Web Sever
7. Design a Unique ID Generator in Distributed Systems)— W
[——) |

Ticket Server

_ Ticket server

Alex Xu - System Design Interview (2nd ed.)

ofs Numeric IDs

Pros ofy It is easy to implement, and it works
for small to medium-scale ap-
plications

_ Cons U® Single point of failure

C The only one option that fits out needs!)

| 1 bit 41 bits 5 bits 5 bits 12 bits
|

|

| o timestamp datacenter ID| machine ID sequence number
‘\

|

|

\ 4 . .

\ It will always be 0. This is reserved

| . . .

\ Sign bit: 1 bit for future uses

|

| a

| 1. Milliseconds(!) since the epoch or

custom epoch

‘ Timestamp: 41 bits We use Twitter snowflake default
\ e epoch 1288834974657, equivalent

\ to Nov 04, 2010, 01:42:54 UTC
\ Twitter snowflake approach

_ Datacenter ID: 5 bits which gives us 2 * 5 = 32 datacenters

which gives us 2 * 5 = 32 machines
_ Machine ID: 5 bits per datacenter

For every ID generated on that
machine/process, the sequence
number is incremented by 1

\ Sequence number: 12 bits

_ /A The number is reset to 0 every millisecond

The maximum timestamp that can

be represented in 41 bits is 2 * 41 - I After 69 years, we will need a new
1=2199023255551 milliseconds epoch time or adopt other
Timestamp e (ms), which gives us: ~ 69 years techniques to migrate IDs

This field is 0 unless more than one
ID is generated in a millisecond on
_ Step 3. Design deep dive the same server

k4 Q: Soin order to be able to generate
Sequence number is 12 bits, which 10k per second we need at least 3
\ Sequence number give us 2 » 12 = 4096 combinations servers and load-balance our

requests, right?
In theory, a machine can support a A: 4096 per MILLI-second! so for
maximum of 4096 new IDs per

10k per second 1 server is more than
_ millisecond enough!

Network Time Protocol is the most

I. Clock synchronization popular solution to this problem

. . . . e.g. fewer sequence numbers but
\ Step 4. Wrap up few additional talking points to consider

. Section length tuning P more timestamp bits

for low concurrency and long-term applications.

. High availability ID generator MUST be highly available!

