
Alex Xu - System Design Interview (2nd ed.)

7. Design a Unique ID Generator in Distributed Systems

Traditional single server DB with 
auto_increment is not large enough 
for distributed systems

Step 1. Understand the problem and 
establish design scope

IDs must be unique

IDs are numerical values only

IDs fit into 64-bit

IDs are ordered by date

Ability to generate over 10,000 
unique IDs per second

Step 2. Propose high-level design 
and get buy-in Possible options

Multi-master replication

Using DB's auto_increment feature 
but increase by k where k is the number of database servers in use

Pros It solves some scalability issues

Cons

Hard to scale with multiple data centers

IDs do not go up with time across 
multiple servers

It does not scale well when a server 
is added or removed

Universally unique identifier (UUID)

UUID is a 128-bit number used to 
identify information in computer 
systems

example: 09c93e62-50b4-468d-
bf8a-c07e1040bfb2

from Wikipedia: after generating 1 
billion UUIDs every second for 
approximately 100 years would the 
probability of creating a single 
duplicate reach 50%

Pros

Generating UUID is simple No coordination between servers is needed

The system is easy to scale
each web server is responsible for 
generating IDs they consume

Cons

IDs are 128 bits long, but our 
requirement is 64 bits

IDs do not go up with time

IDs could be non-numeric

Ticket server

Flicker developed ticket servers to 
generate distributed primary keys

Pros

Numeric IDs

It is easy to implement, and it works 
for small to medium-scale ap-
plications

Cons Single point of failure

Twitter snowflake approach

Sign bit: 1 bit
It will always be 0. This is reserved 
for future uses

Timestamp: 41 bits

Milliseconds(!) since the epoch or 
custom epoch

We use Twitter snowflake default 
epoch 1288834974657, equivalent 
to Nov 04, 2010, 01:42:54 UTC

Datacenter ID: 5 bits which gives us 2 ^ 5 = 32 datacenters

Machine ID: 5 bits
which gives us 2 ^ 5 = 32 machines 
per datacenter

Sequence number: 12 bits

For every ID generated on that 
machine/process, the sequence 
number is incremented by 1

The number is reset to 0 every millisecond

The only one option that fits out needs!

Step 3. Design deep dive

Timestamp

The maximum timestamp that can 
be represented in 41 bits is 2 ^ 41 - 
1 = 2199023255551 milliseconds 
(ms), which gives us: ~ 69 years

After 69 years, we will need a new 
epoch time or adopt other 
techniques to migrate IDs

Sequence number
Sequence number is 12 bits, which 
give us 2 ^ 12 = 4096 combinations

This field is 0 unless more than one 
ID is generated in a millisecond on 
the same server

In theory, a machine can support a 
maximum of 4096 new IDs per 
millisecond

Q: So in order to be able to generate 
10k per second we need at least 3 
servers and load-balance our 
requests, right?
A: 4096 per MILLI-second! so for 
10k per second 1 server is more than 
enough!

Step 4. Wrap up few additional talking points to consider

Clock synchronization
Network Time Protocol is the most 
popular solution to this problem

Section length tuning
e.g. fewer sequence numbers but 
more timestamp bits for low concurrency and long-term applications.

High availability ID generator MUST be highly available!


