100 million URLs are generated per day

Shortened URL can be a combina-
Requirements tion of numbers (0-9) and

( t characters (a-z, A- Z)

Shortened URLs cannot be deleted or updated

1. Write ops: 100 million / 24 /3600 =

|
Step 1. Understand the problem and 1160 per second:!

establish design scope

1. Read ops: assume x10 => 11,600 per second

-

S

Assume service should run for 10
years: 100 million * 365 * 10 = 365
\ oy Back of the envelope estimation billion records

\_ Assume average URL length is 100

I, Storage requirement over 10 years:
365 billion * 100 bytes * 10 years =

\_  365TB

request parameter: {longUrl:

longURLString}
POST api/v1/data/shorten /e
API Endpoints /e \_ return shortURL
k GET api/v1/shortUrl Return longURL for HTTP redirection
[ Request URL: https://tinyurl.com/qtjSopu ]
Request Method: GET
[ Status Code: ' 301 ]

Remote Address: [2606:4700:10::6814:391e]:443

Referrer Policy: no-referrer-when-downgrade

¥ Response Headers
alt-svc: h3-27=":443"; ma=86400, h3-25=":443"; ma=86400, h3-24=":443"; ma=86400, h3-23=":443"; ma=86400
cache-control: max-age=0, no-cache, private
cf-cache-status: DYNAMIC
cf-ray: 581fbd8ac986ed33-SIC
content-type: text/html; charset=UTF-8

Once the server receives a tinyurl date: Fri, 10 Apr 2020 22:00:23 GHT
request’ |t Changes the Short URL to expect-ct: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-cgi/beacon/expect-ct"
the |0ng U RL With 301 redireCt [Io:ation: https://www.amazon.com/dp/BGl?VANTFA?pLink:63eaef76»979c-Ad&re‘F:adb1p13nvvxx_e_2_im]

-

short URL: https://tinyurl.com/qtjSopu
long URL: https://www.amazon.com/dp/B017V4NTFA?pLink=63eaef76-979c-4d&
ref=adblp13nvvxx_0_2_im

Client

Step 2. Propose high-level design URL redirecting E
and get buy-in

tinyurl server

URL

-

\ocation: \ong
Vis,
it Io, ng

The detailed communication s
\_ between clients and servers

301 redirect is permanent - cached by browser oy Good when want to reduce the load on server

\ 301 redirect vs 302 redirect (

302 redirect is temporary ofy Good if analytics is important

Implementation via hash tables:
\_ shortURL -> longURL

www.tinyurl.com/{hashValue}

(

\ URL shortening hash

Each longURL must be hashed to
one hashValue

\ https://tinyurl.com/ (
\ Each hashValue can be mapped

back to the longURL

1. We start from in-memory hash-table But this is not feasible for real world scenarios
url Table
PK | id (auto increment) k2 Q: why do we need id with auto
Data model <4 IAicrement? It will be another big
( shortURL issue here considering high load -
we will need ID generator from
LRl previous chapter!
S . Y D
2. Better option is to use relational f H q why use relational(!) database?
\ database table Vel
k they are less scalable
containing 10 + 26 + 26 = 62
consists of characters from [0-9, a-z, A-Z] possible chars
hashvalue  /
( k find the smallest n such that 62”n = 365 billion ofs n=7
~ Hash function Hash value (Hexadecimal)
CRC32 5cb54054
8. Design a URL Shortener ) MD5 5a62509a84df9ee03fe1230b9df8b84e
SHA-1 Oeeae7916c06853901d9ccbefbfcaf4de57ed85b

U® But even the shortest version is too
Well-known hash functions long (> 7 chars)

( k U® |f we take first 7 chars then there

will be more collisions

Alex Xu - System Design Interview (2nd ed.)

input: longURL

hash function

shortURL

1. Hash + collision resolution

-

longURL +

predefined string

es
Y — exist in DB?
has collision

no
save to DB
ofy To resolve hash collisions, we can @
Hash function recursively append a new predefi-

~ ned string until no more collision is
\ discovered

U® But it is expensive to query the
database to check if a shortURL
exists for every request ofy Bloom filters can improve perférmance

( We prefer this approach! ) /

That's why we need ID!

\ Two types of hash function

)

4 F4 Q: But we don't need shortURL now

“ - as it is a duplication of ID?!

4 L

\ . . k4 Q: However it will allow users to

\_ 2.Base 62 conversion ufs Just convert auto-increment ID to 62-bit generate multiple short URLs for the I. Yes - we should now check if
\_ same longURL??? longURL already exist in our DB

\_ Step 3. Design deep dive

\

EJ Q: All shortURLs can now be
iterated!? Yes. This can be a
security concern!

Hash + collision resolution Base 62 conversion

Fixed short URL length. The short URL length is not fixed. It goes
up with the ID.

It does not need a unique ID generator. This option depends on a unique 1D
generator.

Collision is possible and must be Collision is impossible because ID is

resolved. unique.

It is impossible to figure out the next It is easy to figure out the next available

available short URL because it does not short URL if ID increments by 1 for a new

depend on ID. entry. This can be a security concern.

\ Comparison of the two approaches

1. input: longURL yes—>»| 3. return shortURL

2. longURL in DB?

no

|

4. Generate a
new ID

A

5. Convert ID to

shortURt k2 If we partition data by longURL (to
quickly check it) then how can we
———— E2 Q: How to check longURL? How DB retrieve data by ID/shortURL?
6. Save ID, .
shortURL, table should be indexed and
longURL in DB distributed (partitioned)? K ifwe partition data by ID/shortURL
then how can we quickly check
k longURL?

\_ URL shortening deep dive

(from prev chapter!) is worth

ofy The distributed unique ID generator
k mentioning! k4 Q: This will also solve security concern!?

@ GET https://tinyurl.com/zn9edcu N ¢ e :
User @ ‘ ;
— ' ;
Return long URL: % Web servers

@ https://en.wikipedia.org/wiki/Systems_design Load balancer

®

Database

\ URL redirecting deep dive

Rate limiter
Since the web tier is stateless, itis

easy to scale the web tier by adding

Web server scaling or removing web servers

(

\ Step 4. Wrap up additional considerations

Database replication and sharding
\_ Database scaling are common techniques

\ Analytics

\ Availability, consistency, and reliability



http://www.tinyurl.com/

