
Alex Xu - System Design Interview (2nd ed.)

8. Design a URL Shortener

Step 1. Understand the problem and 
establish design scope

Requirements

100 million URLs are generated per day

Shortened URL can be a combina-
tion of numbers (0-9) and 
characters (a-z, A- Z)

Shortened URLs cannot be deleted or updated

Back of the envelope estimation

Write ops: 100 million / 24 /3600 = 
1,160 per second!

Read ops: assume x10 => 11,600 per second

Assume service should run for 10 
years: 100 million * 365 * 10 = 365 
billion records

Assume average URL length is 100

Storage requirement over 10 years: 
365 billion * 100 bytes * 10 years = 
365 TB

Step 2. Propose high-level design 
and get buy-in

API Endpoints
POST api/v1/data/shorten

request parameter: {longUrl: 
longURLString}

return shortURL

GET api/v1/shortUrl Return longURL for HTTP redirection

URL redirecting

Once the server receives a tinyurl 
request, it changes the short URL to 
the long URL with 301 redirect

The detailed communication 
between clients and servers

301 redirect vs 302 redirect

301 redirect is permanent - cached by browser Good when want to reduce the load on server

302 redirect is temporary Good if analytics is important

Implementation via hash tables: 
shortURL -> longURL

URL shortening

www.tinyurl.com/{hashValue}

Each longURL must be hashed to 
one hashValue

Each hashValue can be mapped 
back to the longURL

Step 3. Design deep dive

Data model

1. We start from in-memory hash-table But this is not feasible for real world scenarios

2. Better option is to use relational 
database table

Q: why do we need id with auto 
increment? It will be another big 
issue here considering high load - 
we will need ID generator from 
previous chapter!

Q: why use relational(!) database? 
they are less scalable

Hash function

hashValue
consists of characters from [0-9, a-z, A-Z]

containing 10 + 26 + 26 = 62 
possible chars

find the smallest n such that 62^n ≥ 365 billion n=7

Two types of hash function

1. Hash + collision resolution

Well-known hash functions
But even the shortest version is too 
long (> 7 chars)

If we take first 7 chars then there 
will be more collisions

To resolve hash collisions, we can 
recursively append a new predefi-
ned string until no more collision is 
discovered But it is expensive to query the 

database to check if a shortURL 
exists for every request Bloom filters can improve performance

2. Base 62 conversion Just convert auto-increment ID to 62-bit

That's why we need ID!

Q: But we don't need shortURL now 
- as it is a duplication of ID?!

Q: However it will allow users to 
generate multiple short URLs for the 
same longURL???

Yes - we should now check if 
longURL already exist in our DB

Q: All shortURLs can now be 
iterated!? Yes. This can be a 
security concern!

We prefer this approach!

Comparison of the two approaches

URL shortening deep dive

 

Q: How to check longURL? How DB 
table should be indexed and 
distributed (partitioned)?

If we partition data by longURL (to 
quickly check it) then how can we 
retrieve data by ID/shortURL?

If we partition data by ID/shortURL 
then how can we quickly check 
longURL?

The distributed unique ID generator 
(from prev chapter!) is worth 
mentioning! Q: This will also solve security concern!?

URL redirecting deep dive

Step 4. Wrap up additional considerations

Rate limiter

Web server scaling

Since the web tier is stateless, it is 
easy to scale the web tier by adding 
or removing web servers

Database scaling
Database replication and sharding 
are common techniques

Analytics

Availability, consistency, and reliability

http://www.tinyurl.com/

