
Software Engineering at Google

Part 2. Culture 2. How to Work Well on Teams

Software development is a team endeavor However people are imperfect

Help Me Hide My Code

Insecurity
People are afraid of others seeing
and judging their work in progress

The Genius Myth

Humans have a natural instinct to
find leaders and role models, idolize
them, and attempt to imitate them But our idols didn't reach success all alone! They did this in a team!

Also being genius is not an excuse
for being a jerk

People should to be team players -
have good social skills

In order to build a career in
companies like Google you should
collaborate with others well!

Hiding Considered Harmful

Early Detection

If you keep your great idea hidden
from the world, it’s easy to make
fundamental design mistakes early
on You risk reinventing wheels!

The more feedback you solicit early
on, the more you lower this risk Fail early, fail fast, fail often

The Bus Factor

Bus factor (noun): the number of
people that need to get hit by a bus
before your project is completely
doomed

Someone might get married, move
away, leave the company, or take
leave to care for a sick relative

Have at least good documentation
in addition to a primary and a
secondary owner

Hopefully most engineers recognize
that it is better to be one part of a
successful project than the critical part of a failed project.

Also other people might help to
solve problems faster

Pace of Progress

Working in a team can help to get
feedback faster - i.e. to shift left!

Case Study: Engineers and Offices

Open spaces are not good too

Because people end up not talking
for risk of annoying dozens of
neighbors

The best is to group people of 4 to
8 in a small rooms

Animals on monitors or the act of
wearing headphones is a common
signal that means “don’t disturb me
unless it’s really important”

And many engineers go into
headphones-only mode when
coding which is bad for collabora-
tion

In Short, Don’t Hide

It’s All About the Team

The 3 Pillars of Social Interaction

Pillar 1: Humility

You are not the center of the
universe (nor is your code!). You’re
neither omniscient nor infallible.
You’re open to self-improvement.

Pillar 2: Respect

You genuinely care about others you
work with. You treat them kindly and
appreciate their abilities and
accomplishments.

Pillar 3: Trust

You believe others are competent
and will do the right thing, and
you’re OK with letting them drive
when appropriate.

Why Do These Pillars Matter?

It’s not about tricking or manipula-
ting people; it’s about creating
relationships to get things done. Relationships always outlast projects.

Humility, Respect, and Trust in Practice

Lose the ego

Do you always feel like you need to
have the first or last word on every
subject?

Do you feel the need to comment on
every detail in a proposal or
discussion?

You need to be a doormat Just don’t come off like a know-it-all

Learn to give and take criticism

Give give constructive criticism politely choose tactful, helpful phrasing

Take learn to accept criticism

Be humble about your skills

Trust that the other person has your best interests

Your code will improve with practice

You are not your code

Fail fast and iterate

A story about a manager who lost
$10 million and was expecting to be
fired but CEO told "Why would I fire
you? I just spent $10 million training
you!"

Failure is an option!

Individuals are rewarded (and even
compete) to see how many ideas
they can disprove or invalidate in a
fixed period of time

Only when a concept truly cannot
be debunked at a whiteboard by all
peers does it proceed to early
prototype

Blameless Post-Mortem Culture

It is NOT
 a useless list of apologies or
excuses or finger-pointing

It is

what was learned

what is going to change as a result
of the learning experience

Make sure

the post-mortem is readily accessible

the team really follows through on
the proposed changes

Don’t erase your tracks—light them
up like a runway for those who
follow you!

A good postmortem includes

A brief summary of the event

A timeline of the event, from
discovery through investigation to
resolution

The primary cause of the event

Impact and damage assessment

A set of action items (with owners)
to fix the problem immediately

A set of action items to prevent the
event from happening again

Lessons learned

Learn patience

A story when top-bottom and
bottom-top engineers were not able
to collaborate on pair programming
and they found another way to
collaborate because they were
respectful and trustful

Be open to influence

The more open you are to influence The more you are able to influence

The more vulnerable you are The stronger you appear

Being Googley

Thrives in ambiguity

Can deal with conflicting messages
or directions, build consensus, and
make progress against a problem,
even when the environment is
constantly shifting.

Values feedback

Has humility to both receive and
give feedback gracefully and
understands how valuable feedback
is for personal (and team) develop-
ment.

Challenges status quo

Is able to set ambitious goals and
pursue them even when there might
be resistance or inertia from others.

Puts the user first

Has empathy and respect for users
of Google’s products and pursues
actions that are in their best
interests.

Cares about the team

Has empathy and respect for
coworkers and actively works to
help them without being asked,
improving team cohesion.

Does the right thing

Has a strong sense of ethics about
everything they do; willing to make
difficult or inconvenient decisions to
protect the integrity of the team and
product.

