4. Encoding and Evolution

Servers may perform rolling
upgrade (staged rollout)

Code changes is not instant

_ Clients may continue using old code

/—(Evolvability

Backward compatibility

Old and new code need to interact

_ Forward compatibility

In-memory
Two representations of data

_ Encoded to pass it somewhere

Can't keep pointers

-

Need translations between two

encoding (serialization or marshalling)

(decoding (parsing, deserializati
unmarshalling)

representations

(

on,

Convenient, due t

o minimal

Benefits additional code
Tied to specific language
(1. Security breaches sometimes when
. decoding instantiates arbitrary
Language-Specific Formats Problems classes

(

Versioning is often afterthought

\ Efficiency is often afterthought

So usually it is a and idea to use
your language's built-in encoding!

Text and somewhat human-readable

XML too verbose and unnecessarily complicated

JSON
Csv

Ambiguity between strings and

numbers and different numbers Float vs Int vs Decimal

-

Not support binary data Base64 as workaround

-

JSON, XML, and Binary Variants

-

for JSON

_ Problems

(
Data schemas exist for XML and
_ JSON but is not widely used

\ CSV doesn't have schema

Easy to agree on their usage to
interchange data between organisa-
tions

\ Main advantage

MessagePack, BSON, BJSON,
UBJSON, BISON, and Smile

-

for XML

WBXML and Fast Infoset

\ Binary encoding

As they don't have schema they still

need to encode field names Due to this not a big saving

\ Problem

Thrift Two different formats

_ But they lose human readability

BinaryProtocol

/—(Formats for Encoding Data)—

Protocol Buffers

They both use field tags instead of fi

_ CompactProtocol

eld names

\ Thrift and Protocol Buffers

Y))

Field tags and schema evolution

Forward and backward compatibility
because of tags
—

Just can't reuse tags

C And can't add/remove required fields

-

Datatypes and schema evolution

Can change data types Int32 -> int64

nothing to identify fields or their datatypes

_ Protocol Buffers Can change optional to repeated

encoding simply consists of values
concatenated together

Reader and writers should use exact
same schema?
Avro reader knows writer schema
and reader schema - and it analyses
them to decide how to parse
The writer's schema and the records
reader’s schema (Can only add/remove fields that
e have default values
Large file with lots of records Schema is once at the beginning of the file
_ Apache Avro 4
Database with individually written records Each record has version number of schema
_ But what is the writer’s schema? contexts
Processes can negotiate the
schema version on connection
\ Sending records over a network connection setup
As result it is friendlier to dynami-
_ Dynamically generated schemas Advantage Lo cally generated schemas (e.g. from
_ Schema doesn't contain field tags database table)
Code generation and dynamically . L .
Avro can be used w/o code generation Which is good for dynamically typed languages

\ typed languages

—

binary encodings based on schemas are

More compact

Schema is a documentation

(Database of schemas can be tested

good for backward/forward compatibility

-

\ The Merits of Schemas

ofs Schema evolution allows flexibility
that gives schema-on-read
approach but also provides better
guarantees and tooling

Single process that access db

sending a message to your future self

before deploy

For statically typed languages code
generation from schemas enables
type checking at compile time

Need backward compatibility

-

Several processes access db older

Forward compatibility is also required

and newer code read and write db I. During read-update-write important

(

Dataflow Through Databases

-

_ Different values written at different times

not to lose fields that you don't
know yet

N

1. data outlives code

Possible
Rewriting (migrating) data to new schema

Can use the same

version for all rows, and data
becomes immutable

_ But expensive on large datasets

So - different rows have different
versions of schema

latest schema Good for formats like Avro

(Also good for analytical-friendly

\ Archival storage Ve

clients and servers

formats like Parquet

APl exposed by the server is known as a "service"

can become a client

javascript code inside web browser

Ajax

server can be a client to anoth

oy Makes the app easier to change and
maintain by making services
independently deployable and
Service-QOriented Architecture evolvable
(SOA) aka "microservices architec-

ture"

er server data encoding used by servers and

REST

clients must be compatible across
versions of the service API

Is a design philosophy that builds on
principles of HTTP

API designed according to the
principles of REST is called RESTful

(

Web services

-

(

SOAP

Dataflow Through Services: REST and RPC

U® The problems with remote
procedure calls (RPCs)

a A

OpenAPI aka Swagger used to
describe RESTful API

N

WSDL used to describe SOAP API Can generate code for server/client

EJB and RMI

Different approaches existed (DCOM

k CORBA

Call remote function like you call it local

"location transparency"

Network calls are unpredictable

Network calls can return timeout

;(Modes of Dataflow)—

\ oy Current directions for RPC

Retries can actually cause multiple calls You should implement deduplication (idempotence)

N))

This approach flawed! Latency can vary

Objects should be encoded Can be a problem for large objects

N

Client and server can be written in
\ different languages

Data types can be different

So - don't hide remote calls!

Thrift and Avro has their RPC support

gRPC for ProtoBuf

New RPC frameworks

Finagle uses Thrift

-
C

Futures (promises)

Rest.li uses JSON over HTTP

to encapsulate asynchronous
actions that may fail

\ Data encoding and evolution for RPC

New features (

Custom RPC protocols with a binary encoding

Streams series of requests and responses

Service Discovery

Better performance

-

\ But RESTful API is good for experimentation and debugging

backward and forward compatibility properties inherited from selected encoding

asynchronous message-passing systems

-

-

\ message broker

can act as a buffer

message

also called a "message queue" or
"message-oriented middleware"

improve system reliability

can redeliver messages to a process
that has crashed

prevent messages from being lost

(
(

oy Advantages over RPC

a A\

avoids the sender needing to know
the IP address and port number of
the recipient

allows one

message to be sent to

_ several recipients

\ logically de

couples the sender from the recipient

typically don't enforce any
particular data model

message is just sequence of bytes
with some metadata

U® Message brokers

-
g N

\ Message-Passing Dataflow

If consumer re-publishes messages
to another topic it should take care
of unknown fields!

each actor can receive and send messages

actor model (It can have state

-

k It is single threaded

No need to deal with threads (race

Benefits conditions, deadlocks)
Distributed actors used to scale app
to multiple nodes
\ Distributed actor frameworks Because actors already assume that
_ Location transparency works better with actors message can be lost

\ Most popular frameworks

No support for forward/backward compatibility

Akka

But can use Protobuf To support rolling updates

Orleans No support for rolling update

Erlang Rolling updates are hard

http://Rest.li

