
11. Stream Processing

Transmitting Event Streams

Messaging Systems

Components

Event Usually contains timestamp (time of day clock)

Producer (publisher or sender)

Multiple consumers (subscribers or recipients)

Topics (streams)

2 main questions

What happens if the producers send 
messages faster than the con-
sumers can process them?

Drops messages

Buffer messages in queue What happens when queue grows?
System crashes

Writes to disk

Apply back pressure aka "flow 
control" (block producer from 
sending more messages)

What happens if nodes crash or 
temporarily go offline—are any 
messages lost?

Direct messaging from producers to consumers

UDP multicast

Brokerless messaging libraries

StatsD and Brubeck

Direct HTTP or RPC request to push 
messages to the consumer Web hooks

Message brokers (message queues)
a kind of database that is optimized 
for handling message streams

Message brokers compared to databases

Multiple consumers

Load balancing
Each message is delivered to one of 
the consumers

Fan-out
Each message is delivered to all of 
the consumers

Acknowledgments and redelivery

Client must explicitly tell the broker 
when it has finished processing a 
message

After timeout broker redelivers 
message to another client Such redelivery leads to messages reordering

Partitioned Logs

Log-based message brokers Hybrid of db and message broker

Apache Kafka

Amazon Kinesis Streams

Twitter’s DistributedLog

Google Cloud Pub/Sub

NATS Steaming

Using logs for message storage

Logs compared to traditional messaging

When message processing is slow 
JMS/AMQP is more preferable over 
Partitioned Log

Where it is fast to process 
messages log-based approach is 

Consumer offsets

It holds current position in the log

If consumer crashes it restarts from 
the same place But can reprocess last message twice

Scaling can be done by keeping 
offset across few client threads but 
better create more partitions and 
use one client = one partition

Disk space usage
circular buffer or ring buffer but 
large because it is on disk

When consumers cannot keep up 
with producers

Can raise alert

If it didn't help and client started 
missing messages - no problem!

Only that client is affected

DEV services can safely consume 
logs from PROD env!

Replaying old messages
It is all based on offset which is 
under client's control

Databases and Streams

Keeping Systems in Sync

Batch processes Can be slow

Dual writes
Race condition

One of writes may fail

Change Data Capture (CDC)

Implementing CDC

One db is the leader, others are followers

Log-based message broker is good 
since it preserves the ordering of 
messages

DB triggers can be used for CDC
But the area fragile and have 
performance overheads

Parsing replication log is more robust

But challenging when schema is changed

There are existing systems that read WAL

Bottled Water implements CDC for 
PostgreSQL using an API that 
decodes the write-ahead log

Maxwell and Debezium do 
something similar for MySQL by 
parsing the binlog

Mongoriver reads the MongoDB oplog

GoldenGate provides similar 
facilities for Oracle

Can use for audit logs!

Initial snapshot
must correspond to a known 
position in the change log

Log compaction
log compaction feature is supported 
by Apache Kafka

API support for change streams Kafka Connect

Event Sourcing

chronicle data model

similar to "Command" pattern - Apply/Undo

Specialized databases Event Store

Deriving current state from the event log
Log compaction is not possible

Because inline CDC events don't 
have all last data

Need a mechanism to store snapshot

Commands and events Event is successful command

State, Streams, and Immutability

The truth is the log The database is a cache of a subset of the log

Advantages of immutable events
Useful in finances

Useful for analysis of user's behaviour

Deriving several views from the 
same event log

Running old and new systems side by side

Easier schema to write data when 
read views are separated

Command query responsibility 
segregation (CQRS)

it is entirely reasonable to 
denormalize data in the read-
optimized views

Twitter’s home timelines are highly 
denormalised (see Chapter 1)

Concurrency control

User can write to the write log, then 
read from the read view and and not 
see the change

Solutions

Sync write to log and update of read views

Or use linearisable storage using 
total order broadcast

From other hand other problems are 
not present - e.g. events help 
implementing multi-object transac-
tions

Limitations of immutability
Sometimes you NEED to rewrite 
history/physically remove data e.g. GDPR's requirement

Processing Streams

What we can do with the stream

Write to storage

Push events to the users

Process few input streams into few 
output streams Operator or Job

Uses of Stream Processing

Complex event processing (CEP) Searching for specific pattern match

Stream analytics

Calculating some metrics over 
events for some time window

Sometimes use probabilistic algos 
that produce approximate results

Maintaining materialized views

Search on streams Subscribe to search query

Message passing and RPC

Reasoning About Time

Event time versus processing time

Message can be delayed and even 
reordered - so processing time is 
sometimes not good

Knowing when you’re ready

It is tricky to understand when time 
window for event time is closed Can define some wait time

Straggler event can appear after the 
window was closed and calculated

Ignore straggler And track number of dropped events

Publish a correction

Producers can send messages 
"From now on there will be no more 
messages with a timestamp earlier 
than t"

Whose clock are you using, anyway?

Can log three timestamps

1. Event time

2. Event sent time

3. Event received time

3-2 => offset of time in device and server
Assuming network delays are less 
than required time accuracy

1+offset => actual event time

Types of windows

Tumbling window Window = 1 minute
between 10:03:00 and 10:03:59

between 10:04:00 and 10:04:59

Hopping window

Window = 7 minute;
Hop size = 1 minute

between 10:03:00 and 10:07:59

between 10:04:00 and 10:08:59

Sliding window Boundaries are not fixed - they are slidiing

Session window

Session is continued if any event 
from the same user in 30 minutes

In SQL: Group by

Stream Joins

Stream-stream join (window join) Need to maintain a state

Stream-table join (stream enrichment)

Table-table join (materialized view maintenance)

Q: how they implement deletes / 
changes? They should recalculate 
and delete materialized data

Time-dependence of joins Slowly changing dimension (SCD)
Better to refer the unique version of 
item that is slowly changing

Fault Tolerance

In batch processing - exactly-once semantics

Microbatching and checkpointing

Typically microbatch is around one second

But side-effects can exist - e.g. 
delicate sent emails

Atomic commit revisited

Idempotence

goal is to discard the partial output 
of any failed tasks

One approach - Distributed 
transaction

Another approach - Idempotence

Idempotent operation - operation 
that you can perform multiple times 
- and it has effect as if you 
performed it only once

A bit of extra data usually helps! e.g. adding log's offset to database update record

Rebuilding state after a failure

Summary

Similar to batch processing but data is unbounded

Transportations

Direct messaging

Message brokers

Event logs

Source of streams

User activity

Sensors

Data feeds

Writes to DB

3 types of joins

Stream-stream joins

Stream-table joins

Table-table joins


