Ethereum and Solidity -
The Complete Developer's Guide

Section 3. Advanced Smart Contracts)—

Lottery Contract

Variables

Name Purpose
manager Address of person who created the contract
players Array of addresses of people who have entered
Functions

Name Purpose

enter Enters a player into the lottery
. . Randomly picks a winner and sends them the

pickWinner prize pool

Players send money to the contract

-

-

K Qisit possible to do this by timer?
Training project "The Lottery Contract" Ma:lagelr tellls tr;?hcon’gract to f
_ Workflow randomly select the winner K Q: s it possible to do this by
k external - non contract event?
Contract selects the winner and
\ send him all the money, and restarts
Basic Types Integer Ranges
Name Lower Bound Upper Bound
Name Notes Examples
int8 -128 127
string Sequence of characters I "Hi there!" | I "Chocolate" I int16 32768 32767
bool Boolean value I true | | false I int32 -2.147,483.648 2,147,483.647
int Integer, positive or negative. Has no decimal I 0 I | -30000 | I 59158 I
uint "Unsigned integer, positive number. Has no decimal [0 | l 30000 | | 999910] int256 Realy, really negative Really, really big
fixed/ufixed 'Fixed' point number. Number with a decimal after it I 20.001 I I -42.4242 I I 3.14 I . int | = | int256
int
address Has methods tied to it for sending money | 0x18bae199c8dbae199c8d |
Unsigned Integer Ranges
Name Lower Bound Upper Bound
uint8 0 255
. uint16 0 65,535
Basic Types -
(uint32 0 4,294,967,295
uint256 0 Really, really big
. . .. uint = | uint256
\ uint (is similar)
The 'msg' Global Variable
Property Name Property Name
msa.data 'Data’ field from the call or transaction
9- that invoked the current function
msa.0as Amount of gas the current function
9.9 invocation has available
msa.sender Address of the account that started the
9- current function invocation
msg.value Amount of ether (in wei) that was sent Each function call has this 'msg'
along with the function invocation variable available
Message Global Variable
Reference Types
Solidity Variable types
(y yp Name Notes Examples
fixed array Array that contains a single type of element. Has an | int(3] -->[1, 2, 3] I | bool[2] --> [true, false] |

Contract

unchanging length

Array that contains a single type of element. Can

change in size over time I intf] ->[1,2,3] I | book] > [true, false] I

dynamic array

Collection of key value pairs. Think of Javascript

I mapping(string => string)]
objects, Ruby hashes, or Python dictionary. All keys

dynamic array 1. We cannot transfer array of strings to JS!

To ensure that > 0.01 ether was sent

f

\ Testing

require(msg.value > 0.01 ether) to the transaction Enter()

-
-

Gotha with require() L. Error message returned is not informative

address public manager;

address[] public players;

\ Validation (with Require statements) function Lottery() public {
manager = msg.sender;

function enter() public payable {
require(msg.value > .01 ether);
players.push(msg.sender);

_ }

A tool to debug the contract

_ Remix Debugger (ofy Remix Debugger can be used to see
K where error happened and step

back/step forward

I. There is no Random Generator in Solidity!

-

Current block difficulty

Really big
number

Y

SHA3 >
Algorithm d

Current time

Addresses of players

We can emulate it - pseudorandom

Generate random number
\ But such RND can be cheated!

_ 4

block block.difficulty

_ Other global variables /"

now

function random() private view returns (uint) {
return uint(keccak256(block.difficulty, now, players));
__

Sends money from the current

Address variable has methods contract to the specified address

transfer(amount)

this.balance is the total amount of
money that contract currently has

f

function pickWinner() public {

_ Sending Ether

require(msg.sender == manager);

uint index = random() % players.length;
players[index] .transferi(this. balance);
players = new address[](0);

When we want to require specific Caller can call PickWinner()

We can use require(msg.sender == manager)

e.g. to ensure that only manager

-

function pickWinner() public restrictedl{
uint index = random() % players.length;
players[index].transfer(this.balance);
players = new address[](0);

\ Function modifier

modifier restricted() {
require(msg.sender == manager);

—

Underscore is a target where the
function code will be placed!

_ Or we can use MODIFIER

Almost same as before - the only difference is no parameter in constructor

-

const assert = require("assert");

const ganache = require("ganache-cli");
const Web3 = require("web3");

const web3 = new Web3(ganache.provider());

const { interface, bytecode } = require("../compile");

Deploy contract locally let lottery;

(let accounts;

beforeEach(fn: async () => {
accounts = await web3.eth.getAccounts();

lottery = await new web3.eth.Contract(JSON.parse(interface))
.deploy(options: { data: bytecode }) ContractSendMethod
.send(options: { from: accounts[0], gas: "1000000" });

\ ContractName.test.js b;

fn: () => {
it(title: "deploys a contract", fn: () => {

describe(title: "Lottery Contract",

assert.ok(lottery.options.address);

Asserting the deployment i

f

it(title: "allows one account to enter", fn: async () => {
await lottery.methods.enter().send({
from: accounts[8],
value: web3.utils.toWei(val: "0.082",

i

unit: "ether"),

const players = await lottery.methods.getPlayers().call({
from: accounts[0],

};

assert.equal(accounts[0], players[0]);
assert.equal(actual: 1, players.length);

Asserting entering the contract D

f

it(title: "allows multiple accounts to enter", fn: async () => {
await lottery.methods.enter().send({
from: accounts[0],
value: web3.utils.toWei(val: "0.82", unit: "ether"),
B;
await lottery.methods.enter().send({
from: accounts[1],
value: web3.utils.toWei(val: "8.02", unit: "ether"),

};

await lottery.methods.enter().send({

from: accounts[2],

value: web3.utils.toWei(val: "0.02", unit: "ether"),
i

const players = await lottery.methods.getPlayers().call({
from: accounts[0],

i

assert.equal(accounts[0], players[0]);
assert.equal(accounts[1], players[1]);
assert.equal(accounts[2], players[2]);

Asserting multiple contract assert.equal(actual: 3, players.length);

_ participants B;

it(title: "requires a minimum amount of ether to enter", fn: async () => {
try {
await lottery.methods.enter().send({
from: accounts[@],
value: 0,
b
assert(value: false);
} catch (err) {
assert(err);
}
b

(it(title: "only manager can call pickWinner", fn: async () => {
try {

Asserting function call validation await lottery.methods.pickWinner().send({
from: accounts[1],

_ With try-catch b

assert(value: false);
} catch (err) {
assert(err);

}

_ b

it(title: "sends money to the winner and resets the players array", fn: async () => {
await lottery.methods.enter().send({
from: accounts[0],
value: web3.utils.toWei(val: "2",

s

unit: "ether"),

const initialBalance = await web3.eth.getBalance(accounts[0]);
await lottery.methods.pickWinner().send({ from: accounts[0] });
const finalBalance = await web3.eth.getBalance(accounts[0]);
const difference = finalBalance - initialBalance;

assert(value: difference > web3.utils.toWei(val: "1.8", wunit: "ether"));

\ Asserting distribution of money »;

mapping must be of the same type, and all values must be of L
the same type mapping(int => bool)
struct Car {
. . . string make;
struct Collection of key value t;)aclerss that can have different string model;
pes. uint value;
}
Generates public function with
index param - to retrieve array's
_ Reference Types element by index
K public array function getPlayers() public view returns (address[]) {
If need to return array then need to return players;
explicitly create a public function }
const myArray = [
[1I 2' 3] ’ I
4, 5, 61,
[7, 8, 9]
I;
Solidity World ABI/JS/Web3 World
\ Gotcha with nested rays Nested Dynamic Arrays Nested Dynamic Arrays
No Dice .
1. We cannot transfer nested array of strings to JS!
string in Solidity is represented as

