
Ethereum and Solidity -
 The Complete Developer's Guide

Section 3. Advanced Smart Contracts

Training project "The Lottery Contract"
Workflow

Players send money to the contract

Manager tells the contract to 
randomly select the winner

Q: Is it possible to do this by timer?

Q: Is it possible to do this by 
external - non contract event?

Contract selects the winner and 
send him all the money, and restarts

Contract

Solidity Variable types

Basic Types

int

uint (is similar)

Message Global Variable

Each function call has this 'msg' 
variable available

Reference Types

public array

Generates public function with 
index param - to retrieve array's 
element by index

If need to return array then need to 
explicitly create a public function

Gotcha with nested rays

We cannot transfer nested array of strings to JS!

string in Solidity is represented as 
dynamic array We cannot transfer array of strings to JS!

Validation (with Require statements)

require(msg.value > 0.01 ether)
To ensure that > 0.01 ether was sent 
to the transaction Enter()

Gotha with require() Error message returned is not informative

Remix Debugger

A tool to debug the contract

Remix Debugger can be used to see 
where error happened and step 
back/step forward

Generate random number

There is no Random Generator in Solidity!

We can emulate it - pseudorandom
But such RND can be cheated!

Other global variables
block block.difficulty

now

Sending Ether

Address variable has methods transfer(amount)
Sends money from the current 
contract to the specified address

this.balance is the total amount of 
money that contract currently has

Function modifier

When we want to require specific Caller We can use require(msg.sender == manager)
e.g. to ensure that only manager 
can call PickWinner()

Or we can use MODIFIER

Underscore is a target where the 
function code will be placed!

Testing

Deploy contract locally

Almost same as before - the only difference is no parameter in constructor

ContractName.test.js

Asserting the deployment

Asserting entering the contract

Asserting multiple contract 
participants

Asserting function call validation 
with try-catch

Asserting distribution of money


