
Adam Bellemare - Building Event-
Driven Microservices

1. Why Event-Driven Microservices

What Are Event-Driven Microservices?

Architectures

1. Traditional monolith-style

2. Service-oriented architectures (SOAs)

multiple microservices synchro-
nously communicating directly with 
one another

3. Event-driven microservice (EDM) architectures Async consuming of events

IT IS WHAT THIS BOOK IS ABOUT

Services/microservices
Small - can be implemented in 2 weeks

Fit in one head

Domain-Driven Design and Bounded Contexts

Domain

Subdomain

Domain (and subdomain) model

Bounded context
Should be built around business 
requirements and not technological 
requirements

Because it’s rare for a company to 
need to change the underlying 
implementation of any given 
product without accompanying 
business requirement changes

Tradeoffs

Code may be replicated a number of 
times, and many services may use 
similar data access patterns

Three levels of Communication Structures

Business Communication Structures

Implementation Communication Structures

Data Communication Structures

Conway’s Law

Organizations which design 
systems...are constrained to 
produce designs which are copies 
of the communication structures of 
these organizations. (c) Melvin 
Conway—How Do Committees 
Invent? (April 1968) 

Problems in Traditional Computing 
(how we use and evolve Communi-
cation Structures)

When new business requirement arrives

Option 1: Make a New Service (move 
from Monolith to SOA) 

Hard, slow, requires extra testing 
and monitoring, requires data sync

Loose coupling However synced data is still coupled!

Option 2: Add It to the Existing 
Service (stay in Monolith)

Easy, fast

Tight coupling

Most team would select this option

The problem is due to a weak or 
nonexistent data communication 
structure

When team grows and need to 
separate into two teams

business communication structure 
cannot work here - because need to 
assign requirement to one team

implementation communication 
structure cannot support reassign-
ments and needs to be broken down What does it mean?

The problem is in weak, ill-defined 
means of communicating data 
between implementation communi-
cation structures

Event-Driven approach (introduces 
different approach to using and 
evolving Communication Structures)

Absolutely different approach (not a 
simple replacement to traditional 
request/response)

It decouples the production 
(ownership) of data from the access 
to it

Features

Events Are the Basis of Communication

Event Streams Provide the Single 
Source of Truth

Consumers Perform Their Own 
Modeling and Querying

Data Communication Is Improved 
Across the Organization

Accessible Data Supports Business 
Communication Changes

Asynchronous Event-Driven 
Microservices (EDM)

Benefits

Granularity

Scalability

Technological flexibility

Business requirement flexibility

Loosely coupling

Continuous delivery support

High testability

No problems in Event-Driven 
Microservices

When new business requirement arrives Make new microservice

When team grows and need to 
separate into two teams Easy to reassign the microservice ownership

Synchronous Microservices

Neither point-to-point request-
response microservices nor 
asynchronous event-driven 
microservices are strictly better 
than the other

Drawbacks of Synchronous 
Microservices

Point-to-point couplings makes future changes more difficult

Dependent scaling can be a bottleneck on scalability

Service failure handling becomes increasingly difficult

API versioning and dependency 
management can add a lot of complexity

Data access tied to the implementation

puts the onus of data access and 
scalability back on the implementa-
tion communication structure

Distributed monoliths
with many intertwining calls being 
made between them

Testing can be difficult

Benefits of Synchronous Microservices

Certain data access patterns are 
favorable to direct request-
response couplings

authenticating a user

reporting on an AB test

Integrations with external third- 
party solutions almost always use a 
synchronous mechanism

Tracing operations across multiple 
systems can be easier in a 
synchronous environment

Services hosting web and mobile 
experiences are by and large 
powered by request-response 
designs

Many developers in today’s market 
tend to be much more experienced 
with synchronous, monolithic-style 
coding


