
Adam Bellemare - Building Event-
Driven Microservices

6. Deterministic Stream Processing

3 key questions

How to choose the order of events 
that are coming from multiple 
partitions?

How to handle out-of-order and 
late-arriving events?

How to produce deterministic 
results when processing streams in 
near–real time VS when processing 
from the beginning of the streams?

Determinism with Event-Driven Workflows

Workflow is explicitly nondeterme-
nistic if based on

wall-clock

query external services

Fully deterministic processing is the ideal case

the reality is that our services can 
only achieve a BEST EFFORT 
determinism

Things we need to facilitate 
detrerminism

consistent timestamps

well-selected event keys

partition assignment

event scheduling

strategies to handle late-arriving events

Key concepts

Timestamps

There are 4 timestamps

Event time

Broker ingestion time

Consumer ingestion time

Processing time

Synchronizing Distributed Timestamps

Two independent systems cannot 
have PRECISELY the same system-
clock time They can only be NEARLY in sync which is good enough for most cases

Network Time Protocol (NTP) servers

+/-few mS when sync inside cloud 
to +/- 100mS when sync with open 
internet

for most cases they provide 
sufficient consistency

Processing with Timestamped Events

You cannot process events using 
naive (e.g. round-robin) order! You should consider events' 

timestamps

Event Scheduling and Deterministic Processing

Your need EVENT SCHEDULING if 
the order of events matters to the 
business logic

Custom Event Schedulers

Some streaming frameworks allow 
to implement custom event 
schedulers

But becareful: many custom 
schedulers are nondeterministic in 
nature

Which time to use?

1. Usually the best is to use locally 
assigned EVENT TIME provided you can rely on its accuracy

2. Next good choice is BROKER 
INGESTION TIME

If the producer has unreliable 
timestamps (and you can’t fix it) it is rare case

Timestamp Extrraction (by Consumer)

is used to extract the right 
timestamp from the event (at 
consumer ingestion time)

Request-Response Calls to External Systems may introduce nondeterministic results

Watermarks

Watermark - is a declaration to 
downstream nodes within the same 
processing topology that all events 
of time t and prior have been 
processed it does not affect the event 

scheduling of the node

it simply notifies the node that it 
should consider any events with a 
timestamp earlier than the water 
mark to be considered late

Watermark propagation between nodes in a single topology

Parallel Processing
Watermark propagation between nodes in a single 
topology with multiple processors

The node’s event time is the 
minimum of all of its input sources’ 
event times

Stream Time

this approach is favored by Apache 
Kafka Streams

Stream time when consuming from multiple input streams

The next event to be processed is 
the smallest value of the two input 
buffers

Parallel Processing

Shuffling events via a repartition event stream

sends the repartitioned events back 
to the event broker using what’s 
known as an internal event stream

Watermarking strategies can also 
use repartition event streams in Apache Samza

Problems and dealing with them

Out-of-Order and Late-Arriving Events

Out-of-order events in an event stream partition

Bounded vs Unbounded datasets

Bounded data sets (such as 
historical data processed in batch) 
are typically fairly resilient to out-of-
order data: e.g. nightly batch 
processing But this comes at the expense of high latency

Unbounded data sets
must consider the requirements of 
latency and determinism

"Late" is only a perspective of a 
specific consumer

Other consumers may consider this event as good

Watermarks

The event t′ is considered late when 
it arrives after the watermark W(t). It 
is up to the specific node how to 
handle this event.

Stream time

The event t′ is considered late when 
it arrives after the stream time has 
been incremented past t′. It is up to 
each operator in the subtopology 
how to handle this event.

Causes and Impacts of Out-of-
Order Events

Sourcing from out-of-order data

Multiple producers to multiple partitions

Shuffling events via a repartition event stream

A single-threaded producer will not 
create out-of-order events in normal 
operation unless it is sourcing its 
data from an out-of-order source

Time-Sensitive Functions and Windowing

Windowing grouping events together by time

3 main types of event windows

Tumbling windows a window of a fixed size

Sliding windows
a fixed window size and incremental 
step known as the window slide

Session windows a dynamically sized window

Handling Late Events

Strategy for handling out-of-order 
and late-arriving events should be 
determined at business level first!

Critical events such as financial 
transactions and system failures

may be required to be handled 
regardless of their position in the 
stream

Measurement style events, such as 
temperature or force metrics

may simply be discarded as no 
longer relevant

Ways

Drop event
Simply drop the event

The window is closed, and any time-
based aggregations are already 
complete

Wait

Delay output of the window results 
until a fixed amount of time has 
passed

This incurs higher determinism at the expense of increased latency

Grace period

Output the windowed result as soon 
as the window is deemed complete

Then, keep the window(s) around 
and available for the predetermined 
grace period

Whenever a late event arrives for 
that window, update the aggrega-
tion and output the newly updated 
aggregation

This is similar to the wait strategy, 
except updates are generated as 
late events arrive

Questions to determine good guidelines

How likely are late events to occur?

How long does your service need to 
guard against late events?

What are the business impacts of 
dropping late events?

What are the business benefits of 
waiting a long time to capture late 
events?

How much disk or memory does it 
take to maintain state?

Do the expenses incurred in waiting 
for late events outweigh the 
benefits?

Reprocessing vs Processing in 
Near-Real Time

During reprocessing (rewind and 
replay) the order should be the 
same

Steps

1. Determine the starting point

2. Determine which consumer 
offsets to reset

3. Consider the volume of data ensure I/O quotas are ok

4. Consider the time to reprocess scale the number of consumers if needed

5. Consider the impact e.g. you shold not re-email users

Intermittent Failures and Late Events

Producer/Event Broker Connectivity Issues

Normal operation prior to producer/broker 
connection outage

Temporary producer/broker connection outage

The producer is able to reconnect and publish its 
temporarily delayed events, while the consumer 
has already incremented its event time

Further Reading

"Streaming 101: The world beyond 
batch" by Tyler Akidau

https://github.com/deordie/deordie-
digest/issues/66

"Distributed systems for fun and 
profit" by Mikito Takada http://book.mixu.net/distsys/

https://github.com/deordie/deordie-digest/issues/66
https://github.com/deordie/deordie-digest/issues/66
http://book.mixu.net/distsys/

