
Adam Bellemare - Building Event-
Driven Microservices

8. Building Workflows with Microservices

The Choreography Pattern

microservice architectures

Direct-call microservice architectures reusable services

Event-driven microservice architectures reusable events

Choreographed architectures (aka 
Reactive architectures)

A subtype of Event-driven architecture

highly decoupled microservice 
architectures

Simple event-driven choreographed workflow

Change of workflow requires many changes

Both services C and B must be 
edited to consume from streams 1 
and 2, respectively

The Orchestration Pattern

There is a centralized coordination!

The orchestrator issues commands 
to and awaits responses from 
subordinate worker microservices

Simple orchestrated event-driven workflow

Materialization of events issued 
from orchestration service

Orchestration can also use a 
request-response pattern

Event-driven workflows generally more durable

Direct-call workflows

Simple direct-call orchestrated workflow

generally faster

Change of workflow is in single place
e.g. Airflow DAGs or Camunda 
BPMN schema

Distributed Transactions

It is best to avoid implementing 
distributed transactions whenever 
possible

Choreographed Transactions

The Saga Pattern

Choreographed transaction success

Choreographed transaction failure with rollbacks

Orchestrated Transactions

Simple orchestrated transaction topology

Simple orchestrated transaction with a failure in the transaction

Issuing the rollback commands in an orchestrated transaction

Just as each microservice is fully 
responsible for its own state 
changes, it is also responsible for 
ensuring that its state is consistent 
after a rollback

Compensation Workflows

can remedy the situation based on 
the business’s customer satisfaction 
policies

As a form of compensation, the 
business could order new stock, 
notify the customer that there has 
been a delay, and offer a discount 
code for the next purchase as an 
apology.

Not always possible


