
Alex Xu - System Design Interview (2nd ed.)

1. Scale from zero to millions of users

Single server setup

Database

Which databases to use?

Relational (SQL or RDBMS)

Non-relational (NoSQL)

Key-value

Graph

Columns

Documents

Vertical scaling vs horizontal scaling 
Vertical scaling (scale up)

has a hard limit
It is impossible to add unlimited 
CPU and memory to a single server

does not have failover and redundancy

If one server goes down, the 
website/app goes down with it 
completely

Horizontal scaling (scale-out)

Load balancer

Database replication

Most applications require a much 
higher ratio of READS to WRITES

thus, the number of slave databases 
in a system is usually larger than the 
number of master databases

Pros

Better performance allows more queries to be 
processed in parallel

all writes and updates happen in 
master nodes; whereas, read 
operations are distributed across 
slave nodes.

Reliability
do not need to worry about data 
loss, because data is replicated

High availability

even if a database is offline, you can 
access data stored in another 
database server

Cache

Cache tier

"read-through cache" strategy

Q: If we have few similar requests at 
the same time - should they all go 
for data or only one should go while 
others should wait until data 
appears in the cache (it is much 
harder to implement)?

Considerations for using cache

Decide when to use cache

Expiration policy

Consistency

Mitigating failures

A single cache server represents a 
potential single point of failure 
(SPOF)

multiple cache servers across 
different data centers are 
recommended to avoid SPOF

Eviction Policy

Least-recently-used (LRU) the most popular policy

Least Frequently Used (LFU)

First in First Out (FIFO)

Content delivery network (CDN)

A CDN is a network of geographica-
lly dispersed servers used to deliver 
STATIC content

DYNAMIC content caching is a 
relatively new concept and beyond 
the scope of this book

Q: similar question here - will CDN 
prevent similar requests to our 
server at the same time?

Considerations of using a CDN

Cost
infrequently used assets can be 
moved out of CDN

Setting an appropriate cache expiry

CDN fallback

clients should be able to detect the 
problem and request resources from 
the origin

Invalidating files
Use CDN's API

Use file versioning, e.g. image.png?v=2

Stateless web tier

STATEFUL architecture

Servers remember client data 
(state) from one request to the next

Needs sticky sessions in load balancer

STATELESS architecture

State data is stored in a shared data 
store and kept out of web servers

NoSQL data store is usually chosen 
here as it is easy to scale

Data centers

Users are geoDNS-routed

Q: Why not keep the state in each 
DC? Why is it shared?

I believe that if it is just a user 
session and other NON-critical 
session data (no changes to 
databases then it can be stored in 
each DC)

Should continue work when the 
whole DC goes down! Several technical challenges here

Traffic redirection

Data synchronization

Test and deployment

Message queue
Decouples the components

the producer can post a message to 
the queue when the consumer is 
unavailable to process it

Q: Should it be inside DC or cross-DC?

Logging, metrics, automation

Logging Monitoring error logs is important

Metrics

Host level metrics CPU, Memory, disk I/O, etc

Aggregated level metrics
the performance of the entire 
database tier, cache tier, etc

Key business metrics
daily active users, retention, 
revenue, etc

Automation Continuous integration is a good practice

Database scaling

Vertical scaling

Horizontal scaling

also known as sharding

The sharding key - the most 
important factor to consider Complexities to consider

Resharding data

Celebrity problem aka a hotspot key problem

Join and de-normalization

A common workaround is to de- 
normalize the database so that 
queries can be performed in a single 
table

Millions of users and beyond Scaling a system is an iterative process
More fine-tuning and new strategies 
are needed to scale

e.g. you might need to optimize 
your system and decouple the 
system to even smaller services


