
Software Engineering at Google

Preface

3 fundamental principles

Time and Change
How code will need to adapt over 
the length of its life

Scale and Growth
How an organization will need to 
adapt as it evolves

Trade-offs and Costs

How an organization makes 
decisions, based on the lessons of 
Time and Change and Scale and 
Growth

3 main aspects

Culture

Processes

Tools

1. What is Software Engineering?

3 differences between programming 
and software engineering

Software engineering is program-
ming integrated over time

Programming just development

Software engineering

development

modification

maintenance

Time What is the expected life span of your code?

Scale

programming task is often an act of 
individual creation

a software engineering task is a team effort

Complexity

Time and Change

Short life span of the code (no 
maintenance needed)

In education environment

In some industries - mobile or early-stage startups

Unbounded life span

Google Search

Linux Kernel

Apache HTTP Server

Life span and importance of upgrades

Hyrum’s Law

With a sufficient number of users of 
an API, it does not matter what you 
promise in the contract: ALL 
OBSERVABLE BEHAVIORS of your 
system will be depended on by 
somebody

Example: Hash Ordering

Hash flooding attacks provide an 
increased incentive for nondetermi-
nistic hash iteration.

Q: how such DoS attack is possible 
if hash order is undefined?

Potential efficiency gains from 
research into improved hash 
algorithms or hash containers 
require changes to hash iteration 
order

BUT Per Hyrum’s Law, programmers 
will write programs that depend on 
the order in which a hash table is 
traversed, if they have the ability to 
do so.

If you don’t know how long your 
code will live, or you cannot promise 
that nothing you depend upon will 
ever change, such an assumption is 
incorrect

There is a difference between “it 
works” and “it is correct"

"Clever" code can be a compliment 
in programming but it is an 
accusation is software engineering

That's why I don't like lambdas, 
functional programming, higher 
order functions, ternary operators, 
and other language/framwork-
specific shits... ;-)

Why Not Just Aim for “Nothing Changes”?

Because bugs (and necessity for 
changes) can be anywhere!

Backward compatibility ensures that 
older systems still function

but that is no guarantee that OLD 
OPTIMIZATIONS are still helpful

Scale and Efficiency

What means scalable?

Google’s production system as a 
whole is among the most complex 
machines created by humankind

Your organization’s codebase is 
SUSTAINABLE

when you are able to change all of 
the things that you ought to change, 
safely, and can do so for the life of 
your codebase

If costs grow superlinearly over 
time, the operation clearly is not 
scalable Need to think about scaling

Human resources

Compute resources

Codebase

Every task your organization has to 
do repeatedly should be SCALABLE

"SCALABLE" = “sublinear scaling 
with regard to human interactions"

Policies are a wonderful tool for 
making process scalable

Policies That Don’t Scale

A traditional approach to depreca-
tion: “We’ll delete the old Widget on 
August 15th; make sure you’ve 
converted to the new Widget.”

"Churn Rule"

Infrastructure teams must do the 
work to move their internal users to 
new versions themselves(!) or do 
the update in place, in backward-
compatible fashion

Q: e.g. you made the change of the 
shared library - you upgrade it's 
usage everywhere, right?

A traditional use of development 
branches => “We need tighter 
controls on when things merge. We 
should merge less frequently”

Policies That Scale Well

"If a product experiences outages or 
other problems as a result of 
infrastructure changes, but the 
issue wasn’t surfaced by tests in our 
Continuous Integration (CI) system, 
it is not the fault of the infrastructu-
re change.” “The Beyoncé Rule.”

“If you liked it then you shoulda put a ring on it.”

🔥

“If you liked it, you should have 
put a CI test on it”

Expertise and shared communica-
tion forums offer great value as an 
organization scales New experts grow

Example: Compiler Upgrade

A compiler upgrade will almost 
always result in minor changes to 
behavior

In Google the 2006 compiler 
upgrade was extremely painful

many Hyrum’s Law problems

didn’t have the Beyoncé Rule yet

The more frequently you change 
your infrastructure, the easier it 
becomes to do so.

Expertise

We know how to do this; for some 
languages, we’ve now done 
hundreds of compiler upgrades 
across many platforms

Stability

There is less change between 
releases because we adopt releases 
more regularly; for some languages, 
we’re now deploying compiler 
upgrades every week or two.

Conformity

There is less code that hasn’t been 
through an upgrade already, again 
because we are upgrading regularly.

Familiarity

Because we do this regularly 
enough, we can spot redundancies 
in the process of performing an 
upgrade and attempt to automate. 
This overlaps significantly with SRE 
views on toil

Policy

We have processes and policies like 
the Beyoncé Rule. The net effect of 
these processes is that upgrades 
remain feasible because infrastruc-
ture teams do not need to worry 
about every unknown usage, only 
the ones that are visible in our CI 
systems.

Shifting Left

The idea that finding problems 
earlier in the developer workflow 
usually reduces costs

Timeline of the developer workflow

Trade-offs and Costs

Within a Google there is a strong 
distaste for “because I said so”

the goal is consensus, not unanimity

It’s fine and expected to see some 
instances of “I don’t agree with your 
metrics/valuation, but I see how you 
can come to that conclusion.”

Should calculate costs when making 
decision between few options

Cost

Financial costs (e.g., money) is usually not the limiting factor

Resource costs (e.g., CPU time)

Personnel costs (e.g., engineering effort)

Is usually a limiting factor

keeping engineers happy, focused, 
and engaged can easily dominate 
other factors

Transaction costs (e.g., what does it 
cost to take action?)

Opportunity costs (e.g., what does 
it cost to not take action?)

Societal costs (e.g., what impact will 
this choice have on society at 
large?)

Consider biases

Status quo bias

Loss aversion

Others...

Example: Markers

How often have you been in a 
meeting that was disrupted by lack 
of a working marker? All for a product that costs less than a dollar

Google tends to have unlocked 
closets full of office supplies, 
including whiteboard markers, in 
most work areas

We often say, “Google is a data-
driven culture.” even when there isn’t data

there might still be evidence, 
precedent, and argument

Decisions are made

because we must (legal 
requirements, customer 

because it is the best option (as 
determined by some appropriate 
decider) we can see at the time, 
based on current evidence.

should not be “We are doing this 
because I said so.”

Inputs to Decision Making

2 scenarios

All of the quantities involved are 
measurable or can at least be 
estimated

We should have conversion table: N 
CPU = M RAM = O network 
bandwidth = X engineering hours = 
Y support hours ....

Some of the quantities are subtle, or 
we don’t know how to measure them

no easy answer

We rely on experience, leadership, 
and precedent to negotiate these 
issues

Example: Distributed Builds

From 60 to 70% of developers build locally

Consider cost of running build farm 
vs weeks/months of saved time

Q: are there tools for distributed 
builds for TypeScript? for Golang?

Google introduced distributed build system

But soon bloated or unnecessary 
dependencies in the build graph 
became all too common.

"Jevons Paradox"

consumption of a resource may 
increase as a response to greater 
efficiency in its use

So - Google did not foresee all of the costs

Even a relatively simple trade-off of 
the form “We’ll spend $$$s for 
compute resources to recoup 
engineer time” had unforeseen 
downstream effects!

Example: Deciding Between Time and Scale

Conflict between time and scale: 
should we add a dependency or 
fork/reimplement it to better suit our 
local needs?

Forks are ok
If project life span is short

If scope is limited

Forks are not ok

for interfaces that could operate 
across time or project-time 
boundaries (data structures, 
serialization formats, networking 
protocols)

Revisiting Decisions, Making Mistakes

Data informing decisions - 

👍

but the data will change over time
=> decisions will need to be 
revisited from time to time

the deciders need to have the right 
to admit mistakes

leaders who admit mistakes are 
more respected, not less!

Software Engineering Versus 
Programming

for a project that will last only a few 
days you don't need

Integration tests

Continuous Deployment

Semantic Versioning Q: what is it?

Dependency Management


